Suppr超能文献

利用稻草和荔枝废弃物共发酵生产细菌纤维素酶及其在荔枝种子衍生的 ZnMg 混合相水滑石基纳米复合材料存在下的稳定性评估。

Bacterial cellulase production via co-fermentation of paddy straw and Litchi waste and its stability assessment in the presence of ZnMg mixed-phase hydroxide-based nanocomposite derived from Litchi chinensis seeds.

机构信息

Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.

Institute of Management Studies Ghaziabad (University Courses Campus), NH09, Adhyatmik Nagar, Ghaziabad, Uttar Pradesh, 201015, India.

出版信息

Int J Biol Macromol. 2023 May 31;238:124284. doi: 10.1016/j.ijbiomac.2023.124284. Epub 2023 Mar 30.

Abstract

Co-fermentation via co-cultured bacterial microorganisms to develop enzymes in solid-state fermentation (SSF) is a promising approach. This strategy is imperative in a series of sustainable and effective approaches due to superior microbial growth and the use of a combination of inexpensive feedstocks for enzyme production wherein mutually participating enzyme-producing microbial communities are employed. Moreover, the addition of nanomaterials to this technique may aid in its prominent advantage of enhancing enzyme production. This strategy may be able to decrease the overall cost of the bioprocessing to produce enzymes by further implementing biogenic, route-derived nanomaterials as catalysts. Therefore, the present study attempts to explore endoglucanase (EG) production using a bacterial coculture system by employing two different bacterial strains, namely, Bacillus subtilis and Serratia marcescens under SSF in the presence of a ZnMg hydroxide-based nanocomposite as a nanocatalyst. The nanocatalyst based on ZnMg hydroxide has been prepared via green synthesis using Litchi waste seed, while SSF for EG production has been conducted using cofermentation of litchi seed (Ls) and paddy straw (Ps) waste. Under an optimized substrate concentration ratio of 5:6 Ps:Ls and in the presence of 2.0 mg of nanocatalyst, the cocultured bacterial system produced 1.6 IU/mL of EG enzyme, which was ~1.33 fold higher as compared to the control. Additionally, the same enzyme showed its stability for 135 min in the presence of 1.0 mg of nanocatalyst at 38 °C. The nanocatalyst has been synthesized using the green method, wherein waste litchi seed is used as a reducing agent, and the nanocatalyst could be employed to improve the production and functional stability of crude enzymes. The findings of the present study may have significant application in lignocellulosic-based biorefinaries and cellulosic waste management.

摘要

通过共培养细菌微生物在固态发酵(SSF)中进行共发酵来开发酶是一种很有前途的方法。由于微生物生长良好,并且使用组合使用廉价的原料进行酶生产,其中使用相互参与的产酶微生物群落,因此这种策略在一系列可持续和有效的方法中是必要的。此外,将纳米材料添加到该技术中可能有助于增强酶生产的突出优势。通过进一步将生物合成、路线衍生的纳米材料用作催化剂,这种策略可以降低生物加工生产酶的总成本。因此,本研究试图通过在 SSF 中使用两种不同的细菌菌株,即枯草芽孢杆菌和粘质沙雷氏菌,在 ZnMg 氢氧化物基纳米复合材料作为纳米催化剂的存在下,利用细菌共培养系统来探索内切葡聚糖酶(EG)的生产。基于 ZnMg 氢氧化物的纳米催化剂是通过使用荔枝废料种子进行绿色合成制备的,而 EG 生产的 SSF 是使用荔枝种子(Ls)和稻草(Ps)废料的共发酵进行的。在优化的底物浓度比为 5:6 Ps:Ls 和存在 2.0 mg 纳米催化剂的情况下,共培养细菌系统产生了 1.6 IU/mL 的 EG 酶,比对照提高了约 1.33 倍。此外,在 38°C 下存在 1.0 mg 纳米催化剂时,相同的酶在 135 分钟内保持稳定。纳米催化剂是使用绿色方法合成的,其中荔枝废料种子被用作还原剂,纳米催化剂可用于提高粗酶的生产和功能稳定性。本研究的结果可能在木质纤维素基生物炼制厂和纤维素废物管理中有重要应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验