Suppr超能文献

一种预测金纳米颗粒光热能量转换的理论模型的开发。

Development of a Theoretical Model That Predicts Optothermal Energy Conversion of Gold Metallic Nanoparticles.

作者信息

Rafiei Nahid, Alishah Aratboni Hossein, Khosravi Khorashad Larousse, Alemzadeh Abbas, Shaji Sadasivan, Morones Ramírez José Rubén

机构信息

Universidad Autónoma de Nuevo León, UANL. Facultad de Ciencias Químicas, Av. Universidad s/n. CD. Universitaria, 66455 San Nicolás de los Garza, NL, Mexico.

Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Parque de Investigación e Innovación Tecnológica, Km. 10 autopista al Aeropuerto Internacional Mariano Escobedo, 66629 Apodaca, NL, Mexico.

出版信息

ACS Omega. 2020 Jan 14;5(3):1377-1383. doi: 10.1021/acsomega.9b02567. eCollection 2020 Jan 28.

Abstract

Gold nanoparticles (AuNPs) can be found in different shapes and sizes, which determine their chemical and physical characteristics. Physical and chemical properties of metallic NPs can be tuned by changing their shape, size, and surface chemistry; therefore, this has led to their use in a wide variety of applications in many industrial and academic sectors. One of the features of metallic NPs is their ability to act as optothermal energy converters, where they absorb light at a specific wavelength and heat up their local nanosurfaces. This feature has been used in many applications where metallic NPs get coupled with thermally responsive systems to trigger an optical response. In this study, we synthesized AuNPs that are spherical in shape with an average diameter of 20.07 nm. This work assessed simultaneously theoretical and experimental techniques to evaluate the different factors that affect heat generation at the surface of AuNPs when exposed to a specific light wavelength. The results indicated that laser power, concentration of AuNPs, time × laser power interaction, and time illumination, were the most important factors that contributed to the temperature change exhibited in the AuNPs solution. We report a regression model that allows predicting heat generation and temperature changes with residual standard errors of less than 4%. These results are highly relevant in the future design and development of applications where metallic NPs are incorporated into systems to induce a temperature change triggered by light exposure.

摘要

金纳米颗粒(AuNPs)有不同的形状和尺寸,这决定了它们的化学和物理特性。金属纳米颗粒的物理和化学性质可以通过改变其形状、尺寸和表面化学性质来调节;因此,这使得它们在许多工业和学术领域有广泛的应用。金属纳米颗粒的一个特性是它们能够作为光热能量转换器,在特定波长下吸收光并加热其局部纳米表面。这一特性已被用于许多金属纳米颗粒与热响应系统耦合以触发光学响应的应用中。在本研究中,我们合成了平均直径为20.07 nm的球形AuNPs。这项工作同时评估了理论和实验技术,以评估在特定光波长下,影响AuNPs表面发热的不同因素。结果表明,激光功率、AuNPs浓度、时间×激光功率相互作用以及光照时间,是导致AuNPs溶液中温度变化的最重要因素。我们报告了一个回归模型,该模型能够预测发热和温度变化,其残差标准误差小于4%。这些结果对于未来将金属纳米颗粒纳入系统以诱导由光照触发的温度变化的应用设计和开发具有高度相关性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cbe9/6990440/ea23bbdf483f/ao9b02567_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验