Department of Electrical and Electronic Engineering, Yonsei University College of Engineering, Seoul, Republic of Korea.
Department of Oral and Maxillofacial Radiology, Yonsei University College of Dentistry, Seoul, Republic of Korea.
Dentomaxillofac Radiol. 2023 Jul;52(5):20220413. doi: 10.1259/dmfr.20220413. Epub 2023 May 16.
Lingual mandibular bone depression (LMBD) is a developmental bony defect in the lingual aspect of the mandible that does not require any surgical treatment. It is sometimes confused with a cyst or another radiolucent pathologic lesion on panoramic radiography. Thus, it is important to differentiate LMBD from true pathological radiolucent lesions requiring treatment. This study aimed to develop a deep learning model for the fully automatic differential diagnosis of LMBD from true pathological radiolucent cysts or tumors on panoramic radiographs without a manual process and evaluate the model's performance using a test dataset that reflected real clinical practice.
A deep learning model using the EfficientDet algorithm was developed with training and validation data sets (443 images) consisting of 83 LMBD patients and 360 patients with true pathological radiolucent lesions. The test data set (1500 images) consisted of 8 LMBD patients, 53 patients with pathological radiolucent lesions, and 1439 healthy patients based on the clinical prevalence of these conditions in order to simulate real-world conditions, and the model was evaluated in terms of accuracy, sensitivity, and specificity using this test data set.
The model's accuracy, sensitivity, and specificity were more than 99.8%, and only 10 out of 1500 test images were erroneously predicted.
Excellent performance was found for the proposed model, in which the number of patients in each group was composed to reflect the prevalence in real-world clinical practice. The model can help dental clinicians make accurate diagnoses and avoid unnecessary examinations in real clinical settings.
舌侧下颌骨凹陷(LMBD)是下颌舌侧的一种发育性骨缺损,不需要任何手术治疗。它有时与全景放射摄影上的囊肿或其他透亮性病理病变相混淆。因此,区分 LMBD 与需要治疗的真正病理性透亮病变非常重要。本研究旨在开发一种深度学习模型,用于在全景放射照片上自动区分 LMBD 与真正病理性透亮囊肿或肿瘤,无需手动过程,并使用反映真实临床实践的测试数据集评估模型的性能。
使用 EfficientDet 算法开发了一种深度学习模型,训练和验证数据集(443 张图像)由 83 名 LMBD 患者和 360 名具有真正病理性透亮病变的患者组成。测试数据集(1500 张图像)由 8 名 LMBD 患者、53 名病理性透亮病变患者和 1439 名健康患者组成,基于这些疾病在临床中的流行率,以模拟真实世界的情况,并使用该测试数据集评估模型的准确性、敏感性和特异性。
模型的准确性、敏感性和特异性均超过 99.8%,仅 1500 张测试图像中的 10 张被错误预测。
对于所提出的模型,发现了出色的性能,其中每个组的患者数量组成反映了真实临床实践中的流行率。该模型可以帮助牙科临床医生在真实的临床环境中做出准确的诊断并避免不必要的检查。