Shaver Alexander, Arroyo-Currás Netzahualcóyotl
Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21202, United States of America.
Department of Chemical and Biomolecular Engineering and Institute for NanoBioTechnology, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States of America.
ECS Sens Plus. 2023 Mar 1;2(1):010601. doi: 10.1149/2754-2726/acc4d9. Epub 2023 Mar 29.
Electrochemical biosensors are a powerful and rapidly evolving molecular monitoring technology. Evidenced by the success of the continuous glucose monitor in managing Type 1 Diabetes, these sensors are capable of precise, accurate measurements in unprocessed biological environments. Nucleic acid-based electrochemical sensors (NBEs) are a specific type of biosensor that employs the target binding and conformational dynamics of nucleic acids for signal transduction. Currently, the vast majority of NBEs are fabricated via self-assembly of alkylthiols on Au electrodes. However, this architecture is limited in scope, as Au electrodes are not universally deployable for all potential NBE applications. Here, to expand the repertoire of materials on which NBEs can be made, we describe the multistep procedure for creating sensing monolayers of alkylphosphonic acids on a conductive oxide surface. Using such monolayers on indium tin oxide (ITO)-coated glass slides, we couple redox reporter-modified nucleic acids and demonstrate signaling of procaine-binding NBE sensors in buffer and human serum. We investigate the operational stability of these NBE sensors to reveal faster signal loss relative to benchmark thiol-on-gold sensing layers, a result that arises due to poor stability of the underlying ITO. Finally, we discuss future directions to continue expansion of NBE sensor materials and applications.
电化学生物传感器是一种强大且发展迅速的分子监测技术。连续血糖监测仪在1型糖尿病管理中的成功证明,这些传感器能够在未处理的生物环境中进行精确、准确的测量。基于核酸的电化学生物传感器(NBEs)是一种特定类型的生物传感器,它利用核酸的靶标结合和构象动力学进行信号转导。目前,绝大多数NBEs是通过烷基硫醇在金电极上的自组装制备的。然而,这种结构的应用范围有限,因为金电极并非适用于所有潜在的NBE应用。在此,为了扩大可制造NBEs的材料种类,我们描述了在导电氧化物表面创建烷基膦酸传感单层的多步骤过程。在涂有氧化铟锡(ITO)的载玻片上使用这种单层,我们将氧化还原报告基团修饰的核酸偶联,并证明了普鲁卡因结合NBE传感器在缓冲液和人血清中的信号传导。我们研究了这些NBE传感器的操作稳定性,发现相对于基准金上硫醇传感层,信号损失更快,这是由于底层ITO稳定性差所致。最后,我们讨论了继续扩大NBE传感器材料和应用的未来方向。