Agius Steve, Cassar Vincent, Magri Caroline, Khan Wasiq, Obe Dhiya Al-Jumeily, Caruana Godwin, Topham Luke
University of Malta, Msida, Malta.
Liverpool John Moores University, Liverpool, UK.
BMC Med Inform Decis Mak. 2025 Jul 28;25(1):281. doi: 10.1186/s12911-025-02941-9.
Emergency departments (EDs) are critical for ensuring timely patient care, especially in triage, where accurate prioritisation is essential for patient safety and resource utilisation. Building on previous research, this study leverages a comprehensive dataset of 653,546 ED visits spanning six years from Mater Dei Hospital, Malta. This dataset enables detailed trend analysis, demographic variation exploration, and predictive modelling of patient prioritisation, admission likelihood, and admitting ward.
Two predictive models (Stage 1 and Stage 2) were developed using the Extreme Gradient Boosting (XGBoost) algorithm. In Stage 1, predictions were made at the triage level using basic demographic and presenting symptom data. Stage 2 incorporated critical blood test results (e.g., Haemoglobin, C-Reactive Protein, Troponin T, and White Blood Cell Count) alongside the demographic and symptom data from Stage 1 to refine and enhance predictions. Key steps in data preprocessing, such as handling missing values, balancing class distributions with SMOTE, and feature encoding, are discussed. Model evaluation employed comprehensive metrics, including AUC-ROC and calibration curves, to assess both performance and reliability. This enhanced description provides a clear roadmap of the model development process, reinforcing the study's rigor and contribution to advancing machine learning applications in emergency care.
The models demonstrated significant predictive capabilities. Key metrics showed improvement between Stage 1 and Stage 2. For example, patient prioritisation accuracy improved from 0.75 to 0.76, admission prediction accuracy rose from 0.80 to 0.82, and admitting ward prediction accuracy increased from 0.80 to 0.86. These enhancements underscore the value of incorporating clinical data to optimise predictions.
The integration of early predictions into ED workflows has the potential to improve patient flow, reduce wait times, and enhance resource allocation. By leveraging XGBoost's capabilities and integrating both demographic and clinical data, this study provides a robust framework for advancing decision-making processes in triage environments.
This research demonstrates the efficacy of machine learning models in predicting key ED outcomes, highlighting their potential to transform emergency care through data-driven insights.
急诊科对于确保患者得到及时治疗至关重要,尤其是在分诊环节,准确的优先级划分对于患者安全和资源利用至关重要。基于先前的研究,本研究利用了马耳他圣母医院六年内653,546次急诊科就诊的综合数据集。该数据集能够进行详细的趋势分析、人口统计学差异探索以及患者优先级、入院可能性和收治病房的预测建模。
使用极端梯度提升(XGBoost)算法开发了两个预测模型(第1阶段和第2阶段)。在第1阶段,使用基本人口统计学和就诊症状数据在分诊级别进行预测。第2阶段纳入了关键血液检测结果(如血红蛋白、C反应蛋白、肌钙蛋白T和白细胞计数)以及第1阶段的人口统计学和症状数据,以完善和增强预测。讨论了数据预处理中的关键步骤,如处理缺失值、使用SMOTE平衡类分布以及特征编码。模型评估采用了包括AUC-ROC和校准曲线在内的综合指标,以评估性能和可靠性。这种增强的描述为模型开发过程提供了清晰的路线图,加强了该研究在推进急诊护理中机器学习应用方面的严谨性和贡献。
模型显示出显著的预测能力。关键指标在第1阶段和第2阶段之间有所改善。例如,患者优先级划分准确率从0.75提高到0.76,入院预测准确率从0.80提高到0.82,收治病房预测准确率从0.80提高到0.86。这些改进凸显了纳入临床数据以优化预测的价值。
将早期预测整合到急诊科工作流程中有可能改善患者流程、减少等待时间并优化资源分配。通过利用XGBoost的能力并整合人口统计学和临床数据,本研究为推进分诊环境中的决策过程提供了一个强大的框架。
本研究证明了机器学习模型在预测急诊科关键结果方面的有效性,突出了它们通过数据驱动的见解改变急诊护理的潜力。