Suppr超能文献

三维电子显微镜和基于体积的终扣分选揭示了输入到膝状体中继细胞和中间神经元树突节段上的选择性。

3D electron microscopy and volume-based bouton sorting reveal the selectivity of inputs onto geniculate relay cell and interneuron dendrite segments.

作者信息

Maher Erin E, Briegel Alex C, Imtiaz Shahrozia, Fox Michael A, Golino Hudson, Erisir Alev

机构信息

Department of Psychology, University of Virginia, Charlottesville, VA, United States.

School of Neuroscience, Virginia Tech, Blacksburg, VA, United States.

出版信息

Front Neuroanat. 2023 Mar 17;17:1150747. doi: 10.3389/fnana.2023.1150747. eCollection 2023.

Abstract

INTRODUCTION

The visual signals evoked at the retinal ganglion cells are modified and modulated by various synaptic inputs that impinge on lateral geniculate nucleus cells before they are sent to the cortex. The selectivity of geniculate inputs for clustering or forming microcircuits on discrete dendritic segments of geniculate cell types may provide the structural basis for network properties of the geniculate circuitry and differential signal processing through the parallel pathways of vision. In our study, we aimed to reveal the patterns of input selectivity on morphologically discernable relay cell types and interneurons in the mouse lateral geniculate nucleus.

METHODS

We used two sets of Scanning Blockface Electron Microscopy (SBEM) image stacks and Reconstruct software to manually reconstruct of terminal boutons and dendrite segments. First, using an unbiased terminal sampling (UTS) approach and statistical modeling, we identified the criteria for volume-based sorting of geniculate boutons into their putative origins. Geniculate terminal boutons that were sorted in retinal and non-retinal categories based on previously described mitochondrial morphology, could further be sorted into multiple subpopulations based on their bouton volume distributions. Terminals deemed non-retinal based on the morphological criteria consisted of five distinct subpopulations, including small-sized putative corticothalamic and cholinergic boutons, two medium-sized putative GABAergic inputs, and a large-sized bouton type that contains dark mitochondria. Retinal terminals also consisted of four distinct subpopulations. The cutoff criteria for these subpopulations were then applied to datasets of terminals that synapse on reconstructed dendrite segments of relay cells or interneurons.

RESULTS

Using a network analysis approach, we found an almost complete segregation of retinal and cortical terminals on putative X-type cell dendrite segments characterized by grape-like appendages and triads. On these cells, interneuron appendages intermingle with retinal and other medium size terminals to form triads within glomeruli. In contrast, a second, presumed Y-type cell displayed dendrodendritic puncta adherentia and received all terminal types without a selectivity for synapse location; these were not engaged in triads. Furthermore, the contribution of retinal and cortical synapses received by X-, Y- and interneuron dendrites differed such that over 60% of inputs to interneuron dendrites were from the retina, as opposed to 20% and 7% to X- and Y-type cells, respectively.

CONCLUSION

The results underlie differences in network properties of synaptic inputs from distinct origins on geniculate cell types.

摘要

引言

在视网膜神经节细胞产生的视觉信号,在被传送到皮层之前,会受到作用于外侧膝状体核细胞的各种突触输入的修饰和调节。膝状体输入在膝状体细胞类型的离散树突段上聚集或形成微电路的选择性,可能为膝状体电路的网络特性以及通过视觉平行通路进行的差异信号处理提供结构基础。在我们的研究中,我们旨在揭示小鼠外侧膝状体核中形态上可辨别的中继细胞类型和中间神经元上的输入选择性模式。

方法

我们使用了两组扫描块面电子显微镜(SBEM)图像堆栈和重建软件,对手动重建的终末小体和树突段进行分析。首先,我们使用无偏终末采样(UTS)方法和统计建模,确定了基于体积将膝状体终末小体分类到其假定起源的标准。根据先前描述的线粒体形态,被分类为视网膜和非视网膜类别的膝状体终末小体,可进一步根据其小体体积分布分类为多个亚群。基于形态学标准被视为非视网膜的终末由五个不同的亚群组成,包括小尺寸的假定皮质丘脑和胆碱能终末小体、两个中等尺寸的假定γ-氨基丁酸能输入,以及一种包含深色线粒体的大尺寸终末小体类型。视网膜终末也由四个不同的亚群组成。然后将这些亚群的截止标准应用于与中继细胞或中间神经元的重建树突段形成突触的终末数据集。

结果

使用网络分析方法,我们发现在具有葡萄状附属物和三联体特征的假定X型细胞树突段上,视网膜和皮质终末几乎完全分离。在这些细胞上,中间神经元附属物与视网膜和其他中等尺寸终末混合,在肾小球内形成三联体。相比之下,第二种假定的Y型细胞显示出树突 - 树突紧密连接,并接收所有终末类型,对突触位置没有选择性;这些细胞不参与三联体形成。此外,X、Y和中间神经元树突接收的视网膜和皮质突触的贡献不同,中间神经元树突超过60%的输入来自视网膜,而X型和Y型细胞分别为20%和7%。

结论

这些结果揭示了不同起源的突触输入在膝状体细胞类型上的网络特性差异。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed35/10064015/b975302199b1/fnana-17-1150747-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验