Saito Keisuke, Nakao Shu, Ishikita Hiroshi
Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan.
Department of Applied Chemistry, The University of Tokyo, Tokyo, Japan.
Front Plant Sci. 2023 Mar 16;14:1029674. doi: 10.3389/fpls.2023.1029674. eCollection 2023.
In photosystem II (PSII), the O3 and O4 sites of the MnCaO cluster form hydrogen bonds with D1-His337 and a water molecule (W539), respectively. The low-dose X-ray structure shows that these hydrogen bond distances differ between the two homogeneous monomer units (A and B) [Tanaka et al., J. Am Chem. Soc. 2017, 139, 1718]. We investigated the origin of the differences using a quantum mechanical/molecular mechanical (QM/MM) approach. QM/MM calculations show that the short O4-O hydrogen bond (~2.5 Å) of the B monomer is reproduced when O4 is protonated in the S state. The short O3-Nε hydrogen bond of the A monomer is due to the formation of a low-barrier hydrogen bond between O3 and doubly-protonated D1-His337 in the overreduced states (S or S). It seems plausible that the oxidation state differs between the two monomer units in the crystal.
在光系统II(PSII)中,MnCaO簇的O3和O4位点分别与D1-His337和一个水分子(W539)形成氢键。低剂量X射线结构表明,这两个均匀单体单元(A和B)之间的这些氢键距离不同[田中等人,《美国化学会志》2017年,139卷,1718页]。我们使用量子力学/分子力学(QM/MM)方法研究了这些差异的起源。QM/MM计算表明,当O4在S态被质子化时,B单体的短O4-O氢键(约2.5 Å)得以重现。A单体的短O3-Nε氢键是由于在过度还原态(S或S)中O3与双质子化的D1-His337之间形成了低势垒氢键。晶体中两个单体单元的氧化态不同似乎是合理的。