Suppr超能文献

使用集成深度学习从病理图像中进行无注释神经胶质瘤分级

Annotation-free glioma grading from pathological images using ensemble deep learning.

作者信息

Su Feng, Cheng Ye, Chang Liang, Wang Leiming, Huang Gengdi, Yuan Peijiang, Zhang Chen, Ma Yongjie

机构信息

Department of Neurobiology, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing 100069, China.

Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.

出版信息

Heliyon. 2023 Mar 21;9(3):e14654. doi: 10.1016/j.heliyon.2023.e14654. eCollection 2023 Mar.

Abstract

Glioma grading is critical for treatment selection, and the fine classification between glioma grades II and III is still a pathological challenge. Traditional systems based on a single deep learning (DL) model can only show relatively low accuracy in distinguishing glioma grades II and III. Introducing ensemble DL models by combining DL and ensemble learning techniques, we achieved annotation-free glioma grading (grade II or III) from pathological images. We established multiple tile-level DL models using residual network ResNet-18 architecture and then used DL models as component classifiers to develop ensemble DL models to achieve patient-level glioma grading. Whole-slide images of 507 subjects with low-grade glioma (LGG) from the Cancer Genome Atlas (TCGA) were included. The 30 DL models exhibited an average area under the curve (AUC) of 0.7991 in patient-level glioma grading. Single DL models showed large variation, and the median between-model cosine similarity was 0.9524, significantly smaller than the threshold of 1.0. The ensemble model based on logistic regression (LR) methods with a 14-component DL classifier (LR-14) demonstrated a mean patient-level accuracy and AUC of 0.8011 and 0.8945, respectively. Our proposed LR-14 ensemble DL model achieved state-of-the-art performance in glioma grade II and III classifications based on unannotated pathological images.

摘要

胶质瘤分级对于治疗方案的选择至关重要,而胶质瘤二级和三级之间的精细分类仍然是一项病理学挑战。基于单一深度学习(DL)模型的传统系统在区分胶质瘤二级和三级时只能显示出相对较低的准确率。通过结合深度学习和集成学习技术引入集成DL模型,我们实现了从病理图像中进行无注释的胶质瘤分级(二级或三级)。我们使用残差网络ResNet-18架构建立了多个图块级DL模型,然后将DL模型用作组件分类器来开发集成DL模型,以实现患者级别的胶质瘤分级。纳入了来自癌症基因组图谱(TCGA)的507名低级别胶质瘤(LGG)患者的全切片图像。这30个DL模型在患者级胶质瘤分级中表现出的曲线下面积(AUC)平均值为0.7991。单个DL模型表现出较大差异,模型间余弦相似度的中位数为0.9524,显著小于阈值1.0。基于逻辑回归(LR)方法、具有14个组件DL分类器的集成模型(LR-14)分别显示出0.8011的平均患者级准确率和0.8945的AUC。我们提出的LR-14集成DL模型在基于未注释病理图像的胶质瘤二级和三级分类中达到了当前的先进性能。

相似文献

引用本文的文献

本文引用的文献

4
A computer-aided grading of glioma tumor using deep residual networks fusion.基于深度残差网络融合的脑胶质瘤计算机辅助分级。
Comput Methods Programs Biomed. 2022 Mar;215:106597. doi: 10.1016/j.cmpb.2021.106597. Epub 2021 Dec 23.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验