Suppr超能文献

基于深度迁移学习的临床级病理图像弥漫性胶质瘤亚型分类。

Classification of Diffuse Glioma Subtype from Clinical-Grade Pathological Images Using Deep Transfer Learning.

机构信息

Department of Neurosurgery, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.

School of Computing, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea.

出版信息

Sensors (Basel). 2021 May 17;21(10):3500. doi: 10.3390/s21103500.

Abstract

Diffuse gliomas are the most common primary brain tumors and they vary considerably in their morphology, location, genetic alterations, and response to therapy. In 2016, the World Health Organization (WHO) provided new guidelines for making an integrated diagnosis that incorporates both morphologic and molecular features to diffuse gliomas. In this study, we demonstrate how deep learning approaches can be used for an automatic classification of glioma subtypes and grading using whole-slide images that were obtained from routine clinical practice. A deep transfer learning method using the ResNet50V2 model was trained to classify subtypes and grades of diffuse gliomas according to the WHO's new 2016 classification. The balanced accuracy of the diffuse glioma subtype classification model with majority voting was 0.8727. These results highlight an emerging role of deep learning in the future practice of pathologic diagnosis.

摘要

弥漫性神经胶质瘤是最常见的原发性脑肿瘤,其形态、位置、遗传改变和对治疗的反应差异很大。2016 年,世界卫生组织(WHO)提供了新的指南,用于进行综合诊断,将形态学和分子特征结合起来用于弥漫性神经胶质瘤。在这项研究中,我们展示了如何使用深度学习方法,通过从常规临床实践中获得的全切片图像,对神经胶质瘤亚型和分级进行自动分类。使用 ResNet50V2 模型的深度迁移学习方法,根据世卫组织 2016 年的新分类对弥漫性神经胶质瘤进行亚型和分级分类。采用多数表决法的弥漫性神经胶质瘤亚型分类模型的平衡准确率为 0.8727。这些结果突出了深度学习在病理诊断未来实践中的新兴作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9294/8156672/5052fed4867d/sensors-21-03500-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验