Suppr超能文献

基于营养相关指标和计算机断层成像特征的Nomogram 预测可切除食管胃结合部腺癌的术前淋巴结转移。

A Nomogram Based on Nutrition-Related Indicators and Computed Tomography Imaging Features for Predicting Preoperative Lymph Node Metastasis in Curatively Resected Esophagogastric Junction Adenocarcinoma.

机构信息

Department of Clinical Laboratory Medicine, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong Province, China.

Esophageal Cancer Prevention and Control Research Center, The Cancer Hospital of Shantou University Medical College, Shantou, Guangdong Province, China.

出版信息

Ann Surg Oncol. 2023 Aug;30(8):5185-5194. doi: 10.1245/s10434-023-13378-7. Epub 2023 Apr 3.

Abstract

BACKGROUNDS

Preoperative noninvasive tools to predict pretreatment lymph node metastasis (PLNM) status accurately for esophagogastric junction adenocarcinoma (EJA) are few. Thus, the authors aimed to construct a nomogram for predicting PLNM in curatively resected EJA.

METHODS

This study enrolled 638 EJA patients who received curative surgery resection and divided them randomly (7:3) into training and validation groups. For nomogram construction, 26 candidate parameters involving 21 preoperative clinical laboratory blood nutrition-related indicators, computed tomography (CT)-reported tumor size, CT-reported PLNM, gender, age, and body mass index were screened.

RESULTS

In the training group, Lasso regression included nine nutrition-related blood indicators in the PLNM-prediction nomogram. The PLNM prediction nomogram yielded an area under the receiver operating characteristic (ROC) curve of 0.741 (95 % confidence interval [CI], 0.697-0.781), which was better than that of the CT-reported PLNM (0.635; 95% CI 0.588-0.680; p < 0.0001). Application of the nomogram in the validation cohort still gave good discrimination (0.725 [95% CI 0.658-0.785] vs 0.634 [95% CI 0.563-0.700]; p = 0.0042). Good calibration and a net benefit were observed in both groups.

CONCLUSIONS

This study presented a nomogram incorporating preoperative nutrition-related blood indicators and CT imaging features that might be used as a convenient tool to facilitate the preoperative individualized prediction of PLNM for patients with curatively resected EJA.

摘要

背景

对于食管胃结合部腺癌(EJA),目前缺乏术前非侵入性工具来准确预测治疗前淋巴结转移(PLNM)状态。因此,作者旨在为可切除的 EJA 构建预测 PLNM 的列线图。

方法

本研究纳入了 638 例接受根治性手术切除的 EJA 患者,并将其随机(7:3)分为训练组和验证组。为了构建列线图,筛选了 26 个候选参数,包括 21 个术前临床实验室血液营养相关指标、计算机断层扫描(CT)报告的肿瘤大小、CT 报告的 PLNM、性别、年龄和体重指数。

结果

在训练组中,Lasso 回归纳入了 PLNM 预测列线图中的 9 个营养相关血液指标。PLNM 预测列线图的受试者工作特征曲线(ROC)下面积为 0.741(95%置信区间[CI],0.697-0.781),优于 CT 报告的 PLNM(0.635;95%CI 0.588-0.680;p<0.0001)。在验证队列中应用该列线图仍然具有良好的判别能力(0.725 [95% CI 0.658-0.785] 与 0.634 [95% CI 0.563-0.700];p=0.0042)。在两组中均观察到良好的校准和净获益。

结论

本研究提出了一种包含术前营养相关血液指标和 CT 成像特征的列线图,可作为一种方便的工具,用于预测可切除的 EJA 患者的 PLNM。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验