Suppr超能文献

提高食管胃交界腺癌淋巴结转移预测能力:一项将影像组学与临床特征相结合的研究

Enhancing lymph node metastasis prediction in adenocarcinoma of the esophagogastric junction: A study combining radiomic with clinical features.

作者信息

Zheng Hui-da, Tian Yu-Chi, Huang Qiao-Yi, Huang Qi-Ming, Ke Xiao-Ting, Xu Jian-Hua, Liang Xiao-Yun, Lin Shu, Ye Kai

机构信息

Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China.

Institute of Research and Clinical Innovations, Neusoft Medical Systems Co., Ltd, Shenyang, China.

出版信息

Med Phys. 2024 Dec;51(12):9057-9070. doi: 10.1002/mp.17374. Epub 2024 Aug 29.

Abstract

BACKGROUND

The incidence of adenocarcinoma of the esophagogastric junction (AEJ) is increasing, and with poor prognosis. Lymph node status (LNs) is particularly important for planning treatment and evaluating the prognosis of patients with AEJ. However, the use of radiomic based on enhanced computed tomography (CT) to predict the preoperative lymph node metastasis (PLNM) status of the AEJ has yet to be reported.

PURPOSE

We sought to investigate the value of radiomic features based on enhanced CT in the accurate prediction of PLNM in patients with AEJ.

METHODS

Clinical features and enhanced CT data of 235 patients with AEJ from October 2017 to May 2023 were retrospectively analyzed. The data were randomly assigned to the training cohort (n = 164) or the external testing cohort (n = 71) at a ratio of 7:3. A CT-report model, clinical model, radiomic model, and radiomic-clinical combined model were developed to predict PLNM in patients with AEJ. Univariate and multivariate logistic regression were used to screen for independent clinical risk factors. Least absolute shrinkage and selection operator (LASSO) regression was used to select the radiomic features. Finally, a nomogram for the preoperative prediction of PLNM in AEJ was constructed by combining Radiomics-score and clinical risk factors. The models were evaluated by area under the receiver operating characteristic curve (AUC-ROC), calibration curve, and decision curve analyses.

RESULTS

A total of 181 patients (181/235, 77.02%) had LNM. In the testing cohort, the AUC of the radiomic-clinical model was 0.863 [95% confidence interval (CI) = 0.738-0.957], and the radiomic model (0.816; 95% CI = 0.681-0.929), clinical model (0.792; 95% CI = 0.677-0.888), and CT-report model (0.755; 95% CI = 0.647-0.840).

CONCLUSION

The radiomic-clinical model is a feasible method for predicting PLNM in patients with AEJ, helping to guide clinical decision-making and personalized treatment planning.

摘要

背景

食管胃交界腺癌(AEJ)的发病率呈上升趋势,且预后较差。淋巴结状态(LNs)对于规划AEJ患者的治疗和评估预后尤为重要。然而,基于增强计算机断层扫描(CT)的影像组学用于预测AEJ患者术前淋巴结转移(PLNM)状态的研究尚未见报道。

目的

我们旨在探讨基于增强CT的影像组学特征在准确预测AEJ患者PLNM中的价值。

方法

回顾性分析2017年10月至2023年5月期间235例AEJ患者的临床特征和增强CT数据。数据按7:3的比例随机分配至训练队列(n = 164)或外部测试队列(n = 71)。构建CT报告模型、临床模型、影像组学模型和影像组学-临床联合模型以预测AEJ患者的PLNM。采用单因素和多因素逻辑回归筛选独立的临床危险因素。使用最小绝对收缩和选择算子(LASSO)回归选择影像组学特征。最后,通过结合影像组学评分和临床危险因素构建AEJ患者术前PLNM预测列线图。通过受试者工作特征曲线下面积(AUC-ROC)、校准曲线和决策曲线分析对模型进行评估。

结果

共有181例患者(181/235,77.02%)发生淋巴结转移。在测试队列中,影像组学-临床模型的AUC为0.863 [95%置信区间(CI)= 0.738 - 0.957],影像组学模型(0.816;95% CI = 0.681 - 0.929)、临床模型(0.792;95% CI = 0.677 - 0.888)和CT报告模型(0.755;95% CI = 0.647 - 0.840)。

结论

影像组学-临床模型是预测AEJ患者PLNM的一种可行方法,有助于指导临床决策和个性化治疗方案的制定。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验