Bryan Audra F, Justice Megan, Stutzman Alexis V, McKay Daniel J, Dowen Jill M
Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
Curriculum in Genetics & Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
Epigenetics Chromatin. 2025 Jun 9;18(1):33. doi: 10.1186/s13072-025-00598-2.
Cohesin is a major regulator of three-dimensional genome organization and gene expression. Cohesin associates with DNA and dynamically extrudes a DNA loop, often bringing two cis-regulatory elements physically close together. Extruding cohesin molecules can be stalled or stabilized when they encounter a CTCF insulator protein on DNA, thereby anchoring a DNA loop. However, many enhancer-promoter loops that are bound by cohesin lack CTCF and it is not clear how cohesin is stabilized at or recruited to these sites in the genome.
Here, we investigated the localization of cohesin with common chromatin regulators and transcription factors on the mouse embryonic stem cell genome. The SP1 and NFYA transcription factors are ubiquitously expressed proteins known to regulate expression of genes associated with a variety of cellular processes, while WDR5 is a ubiquitous core component of multiple chromatin regulatory complexes. We found that cohesin co-bound promoters and enhancers with WDR5, with SP1, or with NFYA in mESCs. Cohesin physically interacted with and colocalized with WDR5, with SP1, or with NFYA on the same molecule of chromatin. Strikingly, depletion of WDR5, SP1, or NFYA caused a decrease in cohesin binding at shared binding sites, while depletion of cohesin did not alter binding of WDR5, SP1, or NFYA on the genome.
These results indicate that common transcription factors and chromatin regulators stabilize cohesin at specific sites in chromatin and may thereby serve as structural regulators of enhancer-promoter loops via the stabilization of cohesin.
黏连蛋白是三维基因组组织和基因表达的主要调节因子。黏连蛋白与DNA结合并动态挤出一个DNA环,常常使两个顺式调节元件在物理上靠近在一起。当挤出的黏连蛋白分子在DNA上遇到CTCF绝缘子蛋白时,它们可能会停滞或稳定下来,从而锚定一个DNA环。然而,许多与黏连蛋白结合的增强子-启动子环缺乏CTCF,目前尚不清楚黏连蛋白如何在基因组中的这些位点稳定或被招募到这些位点。
在这里,我们研究了黏连蛋白与小鼠胚胎干细胞基因组上常见的染色质调节因子和转录因子的定位。SP1和NFYA转录因子是普遍表达的蛋白质,已知它们调节与多种细胞过程相关的基因的表达,而WDR5是多种染色质调节复合物的普遍存在的核心成分。我们发现,在小鼠胚胎干细胞中,黏连蛋白与WDR5、SP1或NFYA共同结合启动子和增强子。黏连蛋白在同一染色质分子上与WDR5、SP1或NFYA发生物理相互作用并共定位。引人注目的是,WDR5、SP1或NFYA的缺失导致黏连蛋白在共享结合位点的结合减少,而黏连蛋白的缺失并没有改变WDR5、SP1或NFYA在基因组上的结合。
这些结果表明,常见的转录因子和染色质调节因子在染色质的特定位点稳定黏连蛋白,从而可能通过黏连蛋白的稳定作用作为增强子-启动子环的结构调节因子。