Suppr超能文献

基于分数阶递归神经网络的动态目标场景下多无人水下航行器机动对抗博弈

Multi-UUV Maneuvering Counter-Game for Dynamic Target Scenario Based on Fractional-Order Recurrent Neural Network.

作者信息

Liu Lu, Zhang Shuo, Zhang Lichuan, Pan Guang, Yu Junzhi

出版信息

IEEE Trans Cybern. 2023 Jun;53(6):4015-4028. doi: 10.1109/TCYB.2022.3225106. Epub 2023 May 17.

Abstract

In this article, a multi-underwater unmanned vehicle (UUV) maneuvering decision-making algorithm is proposed for a counter-game with a dynamic target scenario. The game is modeled with interval-valued intuitionistic fuzzy rules, and an optimal maneuvering strategy is realized using a fractional-order recurrent neural network (RNN). First, underwater environments with weak connectivity, underwater noise, and dynamic uncertainties are analyzed and incorporated into the interval-valued intuitionistic fuzzy set. Then, the maneuvering decision-making model and the expected return of the multi-UUV countermeasure are designed based on the interval-valued intuitionistic fuzzy rules. Subsequently, to optimize the counter-game maneuvering strategy, a fractional-order RNN is formulated based on the Karush-Kuhn-Tucker optimality conditions. In addition, the existence and uniqueness of the optimal maneuvering solutions as well as the stability of the equilibrium point are discussed. Finally, simulation and experimental results are compared to determine the effectiveness of the proposed algorithm. The influence of the fractional order on the convergence rate and optimization error of the proposed algorithm is also minutely examined.

摘要

本文针对具有动态目标场景的对抗博弈,提出了一种多水下无人航行器(UUV)机动决策算法。该博弈采用区间值直觉模糊规则进行建模,并使用分数阶递归神经网络(RNN)实现最优机动策略。首先,分析了连通性弱、水下噪声和动态不确定性的水下环境,并将其纳入区间值直觉模糊集。然后,基于区间值直觉模糊规则设计了多UUV对抗的机动决策模型和期望回报。随后,为了优化对抗博弈机动策略,基于Karush-Kuhn-Tucker最优性条件构建了分数阶RNN。此外,还讨论了最优机动解的存在性和唯一性以及平衡点的稳定性。最后,比较了仿真和实验结果,以确定所提算法的有效性。还详细研究了分数阶对所提算法收敛速度和优化误差的影响。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验