Suppr超能文献

基于相似性的自监督深度学习的噪声抑制。

Noise Suppression With Similarity-Based Self-Supervised Deep Learning.

出版信息

IEEE Trans Med Imaging. 2023 Jun;42(6):1590-1602. doi: 10.1109/TMI.2022.3231428. Epub 2023 Jun 1.

Abstract

Image denoising is a prerequisite for downstream tasks in many fields. Low-dose and photon-counting computed tomography (CT) denoising can optimize diagnostic performance at minimized radiation dose. Supervised deep denoising methods are popular but require paired clean or noisy samples that are often unavailable in practice. Limited by the independent noise assumption, current self-supervised denoising methods cannot process correlated noises as in CT images. Here we propose the first-of-its-kind similarity-based self-supervised deep denoising approach, referred to as Noise2Sim, that works in a nonlocal and nonlinear fashion to suppress not only independent but also correlated noises. Theoretically, Noise2Sim is asymptotically equivalent to supervised learning methods under mild conditions. Experimentally, Nosie2Sim recovers intrinsic features from noisy low-dose CT and photon-counting CT images as effectively as or even better than supervised learning methods on practical datasets visually, quantitatively and statistically. Noise2Sim is a general self-supervised denoising approach and has great potential in diverse applications.

摘要

图像去噪是许多领域下游任务的前提。低剂量和光子计数计算机断层扫描(CT)去噪可以在最小化辐射剂量的情况下优化诊断性能。有监督的深度去噪方法很流行,但需要配对的干净或嘈杂的样本,而这些样本在实际中往往不可用。受独立噪声假设的限制,当前的自监督去噪方法无法处理 CT 图像中的相关噪声。在这里,我们提出了一种开创性的基于相似性的自监督深度去噪方法,称为 Noise2Sim,它以非局部和非线性的方式工作,不仅可以抑制独立噪声,还可以抑制相关噪声。从理论上讲,在温和的条件下,Noise2Sim 与有监督学习方法在渐近意义上是等价的。在实验中,在实际数据集上,Noise2Sim 从嘈杂的低剂量 CT 和光子计数 CT 图像中有效地恢复了内在特征,在视觉、定量和统计上与有监督学习方法一样有效,甚至更好。Noise2Sim 是一种通用的自监督去噪方法,在各种应用中具有很大的潜力。

相似文献

1
Noise Suppression With Similarity-Based Self-Supervised Deep Learning.基于相似性的自监督深度学习的噪声抑制。
IEEE Trans Med Imaging. 2023 Jun;42(6):1590-1602. doi: 10.1109/TMI.2022.3231428. Epub 2023 Jun 1.

引用本文的文献

6
Self-supervised learning for CT image denoising and reconstruction: a review.用于CT图像去噪和重建的自监督学习:综述
Biomed Eng Lett. 2024 Sep 12;14(6):1207-1220. doi: 10.1007/s13534-024-00424-w. eCollection 2024 Nov.

本文引用的文献

1
SPICE: Semantic Pseudo-Labeling for Image Clustering.SPICE:用于图像聚类的语义伪标签
IEEE Trans Image Process. 2022;31:7264-7278. doi: 10.1109/TIP.2022.3221290. Epub 2022 Nov 23.
5
Deep learning based spectral CT imaging.基于深度学习的光谱 CT 成像。
Neural Netw. 2021 Dec;144:342-358. doi: 10.1016/j.neunet.2021.08.026. Epub 2021 Aug 28.
6
Photon Counting CT: Clinical Applications and Future Developments.光子计数CT:临床应用与未来发展
IEEE Trans Radiat Plasma Med Sci. 2021 Jul;5(4):441-452. doi: 10.1109/trpms.2020.3020212. Epub 2020 Aug 28.
10
Weakly-supervised progressive denoising with unpaired CT images.基于未配对 CT 图像的弱监督渐进式去噪。
Med Image Anal. 2021 Jul;71:102065. doi: 10.1016/j.media.2021.102065. Epub 2021 Apr 20.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验