Eulig Elias, Jäger Fabian, Maier Joscha, Ommer Björn, Kachelrieß Marc
Division of X-Ray Imaging and Computed Tomography, German Cancer Research Center (DKFZ), Heidelberg, Germany.
Faculty of Physics and Astronomy, Heidelberg University, Heidelberg, Germany.
Med Phys. 2025 Jan;52(1):188-200. doi: 10.1002/mp.17413. Epub 2024 Sep 30.
Deep learning-based methods led to significant advancements in many areas of medical imaging, most of which are concerned with the reduction of artifacts caused by motion, scatter, or noise. However, with most neural networks being black boxes, they remain notoriously difficult to interpret, hindering their clinical implementation. In particular, it has been shown that networks exhibit invariances w.r.t. input features, that is, they learn to ignore certain information in the input data.
To improve the interpretability of deep learning-based low-dose CT image denoising networks.
We learn a complete data representation of low-dose input images using a conditional variational autoencoder (cVAE). In this representation, invariances of any given denoising network are then disentangled from the information it is not invariant to using a conditional invertible neural network (cINN). At test time, image-space invariances are generated by applying the inverse of the cINN and subsequent decoding using the cVAE. We propose two methods to analyze sampled invariances and to find those that correspond to alterations of anatomical structures.
The proposed method is applied to four popular deep learning-based low-dose CT image denoising networks. We find that the networks are not only invariant to noise amplitude and realizations, but also to anatomical structures.
The proposed method is capable of reconstructing and analyzing invariances of deep learning-based low-dose CT image denoising networks. This is an important step toward interpreting deep learning-based methods for medical imaging, which is essential for their clinical implementation.
基于深度学习的方法在医学成像的许多领域取得了重大进展,其中大部分进展都与减少由运动、散射或噪声引起的伪影有关。然而,由于大多数神经网络都是黑箱模型,它们仍然极难解释,这阻碍了它们在临床中的应用。特别是,已经表明网络对输入特征具有不变性,也就是说,它们学会忽略输入数据中的某些信息。
提高基于深度学习的低剂量CT图像去噪网络的可解释性。
我们使用条件变分自编码器(cVAE)学习低剂量输入图像的完整数据表示。在这种表示中,然后使用条件可逆神经网络(cINN)将任何给定去噪网络的不变性与它不具有不变性的信息分离开来。在测试时,通过应用cINN的逆变换并随后使用cVAE进行解码来生成图像空间不变性。我们提出了两种方法来分析采样的不变性,并找到那些与解剖结构改变相对应的不变性。
所提出的方法应用于四个流行的基于深度学习的低剂量CT图像去噪网络。我们发现这些网络不仅对噪声幅度和实现具有不变性,而且对解剖结构也具有不变性。
所提出的方法能够重建和分析基于深度学习的低剂量CT图像去噪网络的不变性。这是朝着解释基于深度学习的医学成像方法迈出的重要一步,这对于它们在临床中的应用至关重要。