Suppr超能文献

基于紧凑潜在网络的自适应孪生跟踪。

Adaptive Siamese Tracking With a Compact Latent Network.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2023 Jul;45(7):8049-8062. doi: 10.1109/TPAMI.2022.3230064. Epub 2023 Jun 5.

Abstract

In this article, we provide an intuitive viewing to simplify the Siamese-based trackers by converting the tracking task to a classification. Under this viewing, we perform an in-depth analysis for them through visual simulations and real tracking examples, and find that the failure cases in some challenging situations can be regarded as the issue of missing decisive samples in offline training. Since the samples in the initial (first) frame contain rich sequence-specific information, we can regard them as the decisive samples to represent the whole sequence. To quickly adapt the base model to new scenes, a compact latent network is presented via fully using these decisive samples. Specifically, we present a statistics-based compact latent feature for fast adjustment by efficiently extracting the sequence-specific information. Furthermore, a new diverse sample mining strategy is designed for training to further improve the discrimination ability of the proposed compact latent network. Finally, a conditional updating strategy is proposed to efficiently update the basic models to handle scene variation during the tracking phase. To evaluate the generalization ability and effectiveness and of our method, we apply it to adjust three classical Siamese-based trackers, namely SiamRPN++, SiamFC, and SiamBAN. Extensive experimental results on six recent datasets demonstrate that all three adjusted trackers obtain the superior performance in terms of the accuracy, while having high running speed.

摘要

在本文中,我们通过将跟踪任务转换为分类,提供了一种直观的视角来简化基于孪生网络的跟踪器。在这种视角下,我们通过可视化模拟和真实跟踪示例对它们进行了深入分析,发现一些具有挑战性的情况下的失败案例可以看作是离线训练中缺失决定性样本的问题。由于初始帧中的样本包含丰富的序列特定信息,我们可以将它们视为决定性样本来表示整个序列。为了使基础模型快速适应新场景,我们通过充分利用这些决定性样本,提出了一种紧凑的潜在网络。具体来说,我们提出了一种基于统计的紧凑潜在特征,通过有效提取序列特定信息来实现快速调整。此外,我们还设计了一种新的多样化样本挖掘策略来训练,以进一步提高所提出的紧凑潜在网络的判别能力。最后,我们提出了一种条件更新策略,以便在跟踪阶段有效地更新基础模型来处理场景变化。为了评估我们方法的泛化能力和有效性,我们将其应用于调整三个经典的基于孪生网络的跟踪器,即 SiamRPN++、SiamFC 和 SiamBAN。在六个最新数据集上的广泛实验结果表明,所有三个调整后的跟踪器在准确性方面都具有优异的性能,同时具有较高的运行速度。

相似文献

1
Adaptive Siamese Tracking With a Compact Latent Network.基于紧凑潜在网络的自适应孪生跟踪。
IEEE Trans Pattern Anal Mach Intell. 2023 Jul;45(7):8049-8062. doi: 10.1109/TPAMI.2022.3230064. Epub 2023 Jun 5.
4
Distilled Siamese Networks for Visual Tracking.蒸馏孪生网络用于视觉跟踪。
IEEE Trans Pattern Anal Mach Intell. 2022 Dec;44(12):8896-8909. doi: 10.1109/TPAMI.2021.3127492. Epub 2022 Nov 7.
6
Local Semantic Siamese Networks for Fast Tracking.用于快速跟踪的局部语义孪生网络
IEEE Trans Image Process. 2019 Dec 17. doi: 10.1109/TIP.2019.2959256.
7
SiamBAN: Target-Aware Tracking With Siamese Box Adaptive Network.暹罗边界感知网络:基于暹罗框自适应网络的目标感知跟踪
IEEE Trans Pattern Anal Mach Intell. 2023 Apr;45(4):5158-5173. doi: 10.1109/TPAMI.2022.3195759. Epub 2023 Mar 7.
8
Siamese Regression Tracking With Reinforced Template Updating.基于强化模板更新的暹罗回归跟踪
IEEE Trans Image Process. 2021;30:628-640. doi: 10.1109/TIP.2020.3036723. Epub 2020 Dec 4.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验