Suppr超能文献

基于深度学习的物联网医疗系统中增强型乳腺浸润性导管癌分类模型

DEBCM: Deep Learning-Based Enhanced Breast Invasive Ductal Carcinoma Classification Model in IoMT Healthcare Systems.

出版信息

IEEE J Biomed Health Inform. 2024 Mar;28(3):1207-1217. doi: 10.1109/JBHI.2022.3228577. Epub 2024 Mar 6.

Abstract

Accurate breast cancer (BC) diagnosis is a difficult task that is critical for the proper treatment of BC in IoMT (Internet of Medical Things) healthcare systems. This paper proposes a convolutional neural network (CNN)-based diagnosis method for detecting early-stage breast cancer. In developing the proposed method, we incorporated the CNN model for the invasive ductal carcinoma (IDC) classification using breast histology image data. We have incorporated transfer learning (TL) and data augmentation (DA) mechanisms to improve the CNN model's predictive outcomes. For the fine-tuning process, the CNN model was trained with breast histology image data. Furthermore, the held-out cross-validation method for best model selection and hyper-parameter tuning was incorporated. In addition, various performance evaluation metrics for model performance assessment were computed. The experimental results confirmed that the proposed model outperformed the baseline models across all evaluation metrics, achieving 99.04% accuracy. We recommend the proposed method for early recognition of BC in IoMT healthcare systems due to its high performance.

摘要

准确的乳腺癌 (BC) 诊断是一项艰巨的任务,对于 IoMT (医疗物联网) 医疗保健系统中 BC 的正确治疗至关重要。本文提出了一种基于卷积神经网络 (CNN) 的诊断方法,用于检测早期乳腺癌。在开发所提出的方法时,我们结合了 CNN 模型,用于使用乳腺组织学图像数据进行浸润性导管癌 (IDC) 分类。我们结合了迁移学习 (TL) 和数据增强 (DA) 机制来提高 CNN 模型的预测结果。对于微调过程,使用乳腺组织学图像数据对 CNN 模型进行了训练。此外,还采用了保留交叉验证方法来选择最佳模型和调整超参数。此外,还计算了用于评估模型性能的各种性能评估指标。实验结果证实,所提出的模型在所有评估指标上均优于基线模型,准确率达到 99.04%。由于其高性能,我们建议在 IoMT 医疗保健系统中使用所提出的方法进行早期识别 BC。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验