Suppr超能文献

采用改进的EfficientNetV2-S和循环学习率策略提高残疾女性乳腺癌诊断的可及性

Enhancing accessibility for improved diagnosis with modified EfficientNetV2-S and cyclic learning rate strategy in women with disabilities and breast cancer.

作者信息

Al Moteri Moteeb, Mahesh T R, Thakur Arastu, Vinoth Kumar V, Khan Surbhi Bhatia, Alojail Mohammed

机构信息

Department of Management Information Systems, College of Business Administration, King Saud University, Riyadh, Saudi Arabia.

Department of Computer Science and Engineering, Faculty of Engineering and Technology, JAIN (Deemed-to-be University), Bangalore, India.

出版信息

Front Med (Lausanne). 2024 Mar 7;11:1373244. doi: 10.3389/fmed.2024.1373244. eCollection 2024.

Abstract

Breast cancer, a prevalent cancer among women worldwide, necessitates precise and prompt detection for successful treatment. While conventional histopathological examination is the benchmark, it is a lengthy process and prone to variations among different observers. Employing machine learning to automate the diagnosis of breast cancer presents a viable option, striving to improve both precision and speed. Previous studies have primarily focused on applying various machine learning and deep learning models for the classification of breast cancer images. These methodologies leverage convolutional neural networks (CNNs) and other advanced algorithms to differentiate between benign and malignant tumors from histopathological images. Current models, despite their potential, encounter obstacles related to generalizability, computational performance, and managing datasets with imbalances. Additionally, a significant number of these models do not possess the requisite transparency and interpretability, which are vital for medical diagnostic purposes. To address these limitations, our study introduces an advanced machine learning model based on EfficientNetV2. This model incorporates state-of-the-art techniques in image processing and neural network architecture, aiming to improve accuracy, efficiency, and robustness in classification. We employed the EfficientNetV2 model, fine-tuned for the specific task of breast cancer image classification. Our model underwent rigorous training and validation using the BreakHis dataset, which includes diverse histopathological images. Advanced data preprocessing, augmentation techniques, and a cyclical learning rate strategy were implemented to enhance model performance. The introduced model exhibited remarkable efficacy, attaining an accuracy rate of 99.68%, balanced precision and recall as indicated by a significant F1 score, and a considerable Cohen's Kappa value. These indicators highlight the model's proficiency in correctly categorizing histopathological images, surpassing current techniques in reliability and effectiveness. The research emphasizes improved accessibility, catering to individuals with disabilities and the elderly. By enhancing visual representation and interpretability, the proposed approach aims to make strides in inclusive medical image interpretation, ensuring equitable access to diagnostic information.

摘要

乳腺癌是全球女性中一种常见的癌症,为了成功治疗,需要进行精确且及时的检测。虽然传统的组织病理学检查是基准,但它是一个漫长的过程,并且不同观察者之间容易出现差异。利用机器学习实现乳腺癌诊断自动化是一个可行的选择,旨在提高准确性和速度。先前的研究主要集中在应用各种机器学习和深度学习模型对乳腺癌图像进行分类。这些方法利用卷积神经网络(CNN)和其他先进算法从组织病理学图像中区分良性和恶性肿瘤。当前的模型尽管有潜力,但在通用性、计算性能以及处理不平衡数据集方面遇到障碍。此外,这些模型中有相当一部分不具备必要的透明度和可解释性,而这对于医学诊断目的至关重要。为了解决这些局限性,我们的研究引入了一种基于EfficientNetV2的先进机器学习模型。该模型融合了图像处理和神经网络架构中的先进技术,旨在提高分类的准确性、效率和鲁棒性。我们采用了针对乳腺癌图像分类特定任务进行微调的EfficientNetV2模型。我们的模型使用包含各种组织病理学图像的BreakHis数据集进行了严格的训练和验证。实施了先进的数据预处理、增强技术和周期性学习率策略以提高模型性能。所引入的模型表现出显著的效果,准确率达到99.68%,F1分数表明精度和召回率平衡,并且科恩卡帕值可观。这些指标突出了该模型在正确分类组织病理学图像方面的能力,在可靠性和有效性方面超过了当前技术。该研究强调了提高可及性,以满足残疾人和老年人的需求。通过增强视觉表示和可解释性,所提出的方法旨在在包容性医学图像解释方面取得进展,确保公平获取诊断信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9dc/10954891/fd732dffd28a/fmed-11-1373244-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验