Suppr超能文献

基于U-Net的模型用于优化磁共振脑图像分割

U-Net-Based Models towards Optimal MR Brain Image Segmentation.

作者信息

Yousef Rammah, Khan Shakir, Gupta Gaurav, Siddiqui Tamanna, Albahlal Bader M, Alajlan Saad Abdullah, Haq Mohd Anul

机构信息

Yogananda School of AI, Computers and Data Sciences, Shoolini University, Solan 173229, India.

College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia.

出版信息

Diagnostics (Basel). 2023 May 4;13(9):1624. doi: 10.3390/diagnostics13091624.

Abstract

Brain tumor segmentation from MRIs has always been a challenging task for radiologists, therefore, an automatic and generalized system to address this task is needed. Among all other deep learning techniques used in medical imaging, U-Net-based variants are the most used models found in the literature to segment medical images with respect to different modalities. Therefore, the goal of this paper is to examine the numerous advancements and innovations in the U-Net architecture, as well as recent trends, with the aim of highlighting the ongoing potential of U-Net being used to better the performance of brain tumor segmentation. Furthermore, we provide a quantitative comparison of different U-Net architectures to highlight the performance and the evolution of this network from an optimization perspective. In addition to that, we have experimented with four U-Net architectures (3D U-Net, Attention U-Net, R2 Attention U-Net, and modified 3D U-Net) on the BraTS 2020 dataset for brain tumor segmentation to provide a better overview of this architecture's performance in terms of Dice score and Hausdorff distance 95%. Finally, we analyze the limitations and challenges of medical image analysis to provide a critical discussion about the importance of developing new architectures in terms of optimization.

摘要

从磁共振成像(MRI)中进行脑肿瘤分割,对放射科医生来说一直是一项具有挑战性的任务,因此,需要一个自动且通用的系统来完成这项任务。在医学成像中使用的所有其他深度学习技术中,基于U-Net的变体是文献中发现的用于分割不同模态医学图像的最常用模型。因此,本文的目标是研究U-Net架构中的众多进展和创新以及近期趋势,以突出U-Net在提高脑肿瘤分割性能方面的持续潜力。此外,我们对不同的U-Net架构进行了定量比较,从优化的角度突出该网络的性能和演变。除此之外,我们在BraTS 2020数据集上对四种U-Net架构(3D U-Net、注意力U-Net、R2注意力U-Net和改进的3D U-Net)进行了脑肿瘤分割实验,以更好地概述该架构在Dice分数和95%豪斯多夫距离方面的性能。最后,我们分析了医学图像分析的局限性和挑战,以便就优化方面开发新架构的重要性进行批判性讨论。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/00ef/10178263/63da1c85561b/diagnostics-13-01624-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验