Suppr超能文献

语言理解中粗粒度语义特征的预测:来自 ERP 表象相似性分析和汉语分类器的证据。

Predicting coarse-grained semantic features in language comprehension: evidence from ERP representational similarity analysis and Chinese classifier.

机构信息

Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China.

Faculty of Linguistics, Philology and Phonetics, University of Oxford, Oxford OX1 2HG, United Kingdom.

出版信息

Cereb Cortex. 2023 Jun 20;33(13):8312-8320. doi: 10.1093/cercor/bhad116.

Abstract

Existing studies demonstrate that comprehenders can predict semantic information during language comprehension. Most evidence comes from a highly constraining context, in which a specific word is likely to be predicted. One question that has been investigated less is whether prediction can occur when prior context is less constraining for predicting specific words. Here, we aim to address this issue by examining the prediction of animacy features in low-constraining context, using electroencephalography (EEG), in combination with representational similarity analysis (RSA). In Chinese, a classifier follows a numeral and precedes a noun, and classifiers constrain animacy features of upcoming nouns. In the task, native Chinese Mandarin speakers were presented with either animate-constraining or inanimate-constraining classifiers followed by congruent or incongruent nouns. EEG amplitude analysis revealed an N400 effect for incongruent conditions, reflecting the difficulty of semantic integration when an incompatible noun is encountered. Critically, we quantified the similarity between patterns of neural activity following the classifiers. RSA results revealed that the similarity between patterns of neural activity following animate-constraining classifiers was greater than following inanimate-constraining classifiers, before the presentation of the nouns, reflecting pre-activation of animacy features of nouns. These findings provide evidence for the prediction of coarse-grained semantic feature of upcoming words.

摘要

现有研究表明,理解者可以在语言理解过程中预测语义信息。大多数证据来自高度受限的语境,在这种语境中,特定的词很可能被预测到。一个较少被研究的问题是,在先前的语境对特定词的预测限制较少的情况下,是否可以进行预测。在这里,我们旨在通过使用脑电图 (EEG) 结合表示相似性分析 (RSA) 来解决这个问题,研究在低约束语境中预测生物性特征。在汉语中,量词紧跟在数字后面,位于名词之前,并且量词限制了即将出现的名词的生物性特征。在任务中,母语为汉语普通话的参与者被呈现出有生命限制或无生命限制的量词,然后是一致或不一致的名词。脑电图振幅分析显示,不一致条件下出现 N400 效应,反映出遇到不兼容名词时语义整合的困难。关键的是,我们量化了量词之后的神经活动模式之间的相似性。RSA 结果表明,在名词呈现之前,有生命限制的量词之后的神经活动模式之间的相似性大于无生命限制的量词之后的相似性,反映了名词生物性特征的预先激活。这些发现为即将到来的单词的粗粒度语义特征的预测提供了证据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6b1/10786091/b3255faf7ea6/bhad116f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验