Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Bld. 1, 121205, Moscow, Russia.
Center for Energy Science and Technology, Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Bld. 1, 121205, Moscow, Russia.
Sci Rep. 2023 Apr 4;13(1):5518. doi: 10.1038/s41598-023-31487-x.
Diatoms are single cell microalgae enclosed in silica exoskeletons (frustules) that provide inspiration for advanced hybrid nanostructure designs mimicking multi-scale porosity to achieve outstanding mechanical and optical properties. Interrogating the structure and properties of diatoms down to nanometer scale leads to breakthrough advances reported here in the nanomechanical characterization of Coscinodiscus oculus-iridis diatom pure silica frustules, as well as of air-dried and wet cells with organic content. Static and dynamic mode Atomic Force Microscopy (AFM) and in-SEM nanoindentation revealed the peculiarities of diatom response with separate contributions from material nanoscale behavior and membrane deformation of the entire valve. Significant differences in the nanomechanical properties of the different frustule layers were observed. Furthermore, the deformation response depends strongly on silica hydration and on the support from the internal organic content. The cyclic loading revealed that the average compliance of the silica frustule is 0.019 m/N and increases with increasing number of cycles. The structure-mechanical properties relationship has a direct impact on the vibrational properties of the frustule as a complex micrometer-sized mechanical system. Lessons from Nature's nanostructuring of diatoms open up pathways to new generations of nano- and microdevices for electronic, electromechanical, photonic, liquid, energy storage, and other applications.
硅藻是一种单细胞微藻,被包裹在二氧化硅外壳(壳瓣)中,这些壳瓣为模仿多尺度孔隙率的先进混合纳米结构设计提供了灵感,从而实现出色的机械和光学性能。对硅藻的结构和特性进行纳米级别的研究,带来了突破性的进展,本研究报告了对 Coscinodiscus oculus-iridis 硅藻纯二氧化硅壳瓣以及具有有机含量的干燥和湿润细胞的纳米力学特性的研究。静态和动态模式原子力显微镜(AFM)和 SEM 内纳米压痕揭示了硅藻响应的特点,这是由材料纳米级行为和整个阀瓣膜变形的单独贡献所导致的。观察到不同壳瓣层的纳米力学性能存在显著差异。此外,变形响应强烈依赖于二氧化硅的水合作用以及内部有机含量的支撑。循环加载表明,二氧化硅壳瓣的平均柔量为 0.019 m/N,并随循环次数的增加而增加。结构-力学性能关系对壳瓣的振动特性有直接影响,因为壳瓣是一个复杂的微米级机械系统。从硅藻的纳米结构中获得的经验教训为新一代纳米和微器件开辟了道路,这些器件可用于电子、机电、光子、液体、能量存储和其他应用。