Suppr超能文献

单个经电生理鉴定的蟹肌纤维中的酶活性。

Enzyme activities in single electrophysiologically identified crab muscle fibres.

作者信息

Maier L, Pette D, Rathmayer W

出版信息

J Physiol. 1986 Feb;371:191-9. doi: 10.1113/jphysiol.1986.sp015968.

Abstract

The superficial muscle fibres in the proximal part of the closer muscle in the crab Eriphia can be separated into four fibre groups (I-IV) on the basis of electrophysiological and histochemical characteristics. The activity levels of glyceraldehydephosphate dehydrogenase (GAPDH), lactate dehydrogenase (LDH), citrate synthase (CS), NADP-isocitrate dehydrogenase (IDH) and 3-hydroxyacyl-CoA dehydrogenase (HAD), determined in single electrophysiologically identified fibres, differed significantly among the different fibre groups. In addition, fibres belonging to the same group, with similar electrophysiological characteristics, demonstrated variability with regard to metabolic enzyme activities. Nevertheless, comparison of absolute enzyme activities and enzyme activity ratios permitted the discrimination of at least three groups. These groups corresponded with those defined according to electrophysiological and histochemical characteristics. The group I fibres (tonic fibres) are intermediate in oxidative potential and show the lowest values of glycolytic enzymes. The group II and group III fibres can be regarded as fast oxidative fibres. The high ratio between activity levels of enzymes for glycolytic and oxidative metabolism found for group IV fibres (fast fibres) demonstrated that this group depends strongly on anaerobic metabolism.

摘要

根据电生理和组织化学特征,蟹类Eriphia中闭合肌近端的表层肌纤维可分为四个纤维组(I-IV)。在单个经电生理鉴定的纤维中测定的甘油醛磷酸脱氢酶(GAPDH)、乳酸脱氢酶(LDH)、柠檬酸合酶(CS)、NADP-异柠檬酸脱氢酶(IDH)和3-羟酰基辅酶A脱氢酶(HAD)的活性水平在不同纤维组之间存在显著差异。此外,属于同一组且具有相似电生理特征的纤维在代谢酶活性方面也表现出变异性。然而,通过比较绝对酶活性和酶活性比率,可以区分出至少三个组。这些组与根据电生理和组织化学特征定义的组相对应。I组纤维(紧张性纤维)的氧化潜能处于中等水平,且糖酵解酶的值最低。II组和III组纤维可被视为快速氧化纤维。IV组纤维(快速纤维)的糖酵解和氧化代谢酶活性水平之间的高比率表明,该组强烈依赖无氧代谢。

相似文献

1
Enzyme activities in single electrophysiologically identified crab muscle fibres.
J Physiol. 1986 Feb;371:191-9. doi: 10.1113/jphysiol.1986.sp015968.
2
Enzyme levels in pools of microdissected human muscle fibres of identified type. Adaptive response to exercise.
Acta Physiol Scand. 1984 Apr;120(4):505-15. doi: 10.1111/j.1748-1716.1984.tb07414.x.
5
Enzyme activities in type I and II muscle fibres of human skeletal muscle in relation to age and torque development.
Acta Physiol Scand. 1989 May;136(1):29-36. doi: 10.1111/j.1748-1716.1989.tb08626.x.
6
Effects of ischaemia on enzyme-activities in the soleus muscle of the rat.
Pflugers Arch. 1979 Mar 16;379(2):203-8. doi: 10.1007/BF00586949.
8
Effects of sleep deprivation on the activity of selected metabolic enzymes in skeletal muscle.
Eur J Appl Physiol Occup Physiol. 1981;47(1):41-6. doi: 10.1007/BF00422481.
9
Enzyme activities in quadriceps femoris muscle of obese diabetic male patients.
Diabetologia. 1977 Sep;13(5):527-9. doi: 10.1007/BF01234508.
10
The effect of five days' fasting on skeletal muscle enzymes in obese men.
Horm Metab Res. 1983 Jun;15(6):269-71. doi: 10.1055/s-2007-1018692.

引用本文的文献

1
Fiber-type distribution in insect leg muscles parallels similarities and differences in the functional role of insect walking legs.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2017 Oct;203(10):773-790. doi: 10.1007/s00359-017-1190-8. Epub 2017 Jun 8.
2
Inhibitory motoneurons in arthropod motor control: organisation, function, evolution.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2014 Aug;200(8):693-710. doi: 10.1007/s00359-014-0922-2. Epub 2014 Jun 26.
3
Non-uniformity of sarcomere lengths can explain the 'catch-like' effect of arthropod muscle.
J Muscle Res Cell Motil. 1994 Oct;15(5):535-46. doi: 10.1007/BF00121159.
4
Intracellular Na+, K+ and Cl- activity in tonic and phasic muscle fibers of the crab Eriphia.
Pflugers Arch. 1989 Mar;413(5):487-92. doi: 10.1007/BF00594178.
5

本文引用的文献

1
DIFFERENCES IN MUSCLE FIBRE PROPERTIES AS A FACTOR IN "FAST" AND "SLOW" CONTRACTION IN CARCINUS.
Comp Biochem Physiol. 1963 Sep;10:17-32. doi: 10.1016/0010-406x(63)90099-9.
2
Motor unit of mammalian muscle.
Physiol Rev. 1980 Jan;60(1):90-142. doi: 10.1152/physrev.1980.60.1.90.
3
Comparison of enzyme activities among single muscle fibres within defined motor units.
J Physiol. 1981 Feb;311:489-95. doi: 10.1113/jphysiol.1981.sp013600.
5
Excitation and inhibition in crab muscle fibres.
Comp Biochem Physiol. 1965 Dec;16(4):409-26. doi: 10.1016/0010-406x(65)90306-3.
6
Mechanical and electrical responses of single innervated crab-muscle fibres.
J Physiol. 1965 Oct;180(3):449-82. doi: 10.1113/jphysiol.1965.sp007712.
8
Correlations between enzymes of energy-supplying metabolism as a basic pattern of organization in muscle.
Comp Biochem Physiol B. 1972 Mar 15;41(3):533-40. doi: 10.1016/0305-0491(72)90116-2.
9
Correlated electrophysiological and ultrastructural studies of a crustacean motor unit.
J Gen Physiol. 1972 May;59(5):586-615. doi: 10.1085/jgp.59.5.586.
10
Metabolic differentiation of distinct muscle types at the level of enzymatic organization.
Eur J Biochem. 1969 Sep;10(2):198-206. doi: 10.1111/j.1432-1033.1969.tb00674.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验