Suppr超能文献

一种用于处理内生性情况下最优治疗方案的半参数工具变量方法。

A semiparametric instrumental variable approach to optimal treatment regimes under endogeneity.

作者信息

Cui Yifan, Tchetgen Eric Tchetgen

机构信息

Department of Statistics, The Wharton School, University of Pennsylvania, Philadelphia, PA 19104.

出版信息

J Am Stat Assoc. 2021;116(533):162-173. doi: 10.1080/01621459.2020.1783272. Epub 2020 Aug 4.

Abstract

There is a fast-growing literature on estimating optimal treatment regimes based on randomized trials or observational studies under a key identifying condition of no unmeasured confounding. Because confounding by unmeasured factors cannot generally be ruled out with certainty in observational studies or randomized trials subject to noncompliance, we propose a general instrumental variable approach to learning optimal treatment regimes under endogeneity. Specifically, we establish identification of both value function for a given regime D and optimal regimes with the aid of a binary instrumental variable, when no unmeasured confounding fails to hold. We also construct novel multiply robust classification-based estimators. Furthermore, we propose to identify and estimate optimal treatment regimes among those who would comply to the assigned treatment under a monotonicity assumption. In this latter case, we establish the somewhat surprising result that complier optimal regimes can be consistently estimated without directly collecting compliance information and therefore without the complier average treatment effect itself being identified. Our approach is illustrated via extensive simulation studies and a data application on the effect of child rearing on labor participation.

摘要

在无未测量混杂这一关键识别条件下,基于随机试验或观察性研究来估计最优治疗方案的文献正在迅速增加。由于在观察性研究或存在不依从情况的随机试验中,通常无法确定排除未测量因素的混杂作用,因此我们提出了一种通用的工具变量方法,用于在存在内生性的情况下学习最优治疗方案。具体而言,当无未测量混杂不成立时,我们借助二元工具变量建立给定方案D的价值函数和最优方案的识别。我们还构建了新颖的基于多重稳健分类的估计量。此外,我们建议在单调性假设下,在那些会依从分配治疗的人群中识别和估计最优治疗方案。在后一种情况下,我们得出了一个有些令人惊讶的结果:可以在不直接收集依从性信息的情况下一致地估计依从者最优方案,因此也无需识别依从者平均治疗效应本身。我们通过广泛的模拟研究和一个关于育儿对劳动力参与影响的数据应用来说明我们的方法。

相似文献

引用本文的文献

1
8
Instrumented difference-in-differences.工具变量双重差分法。
Biometrics. 2023 Jun;79(2):569-581. doi: 10.1111/biom.13783. Epub 2022 Nov 9.

本文引用的文献

4
Estimating Dynamic Treatment Regimes in Mobile Health Using V-learning.使用V学习法估计移动健康中的动态治疗方案。
J Am Stat Assoc. 2020;115(530):692-706. doi: 10.1080/01621459.2018.1537919. Epub 2019 Apr 17.
5
Precision Medicine.精准医学
Annu Rev Stat Appl. 2019 Mar;6:263-286. doi: 10.1146/annurev-statistics-030718-105251.
6
7
Quantile-Optimal Treatment Regimes.分位数最优治疗方案
J Am Stat Assoc. 2018;113(523):1243-1254. doi: 10.1080/01621459.2017.1330204. Epub 2018 Jun 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验