Suppr超能文献

一种用于优化动态治疗方案的贝叶斯机器学习方法。

A Bayesian Machine Learning Approach for Optimizing Dynamic Treatment Regimes.

作者信息

Murray Thomas A, Yuan Ying, Thall Peter F

机构信息

Department of Biostatistics, MD Anderson Cancer Center.

出版信息

J Am Stat Assoc. 2018;113(523):1255-1267. doi: 10.1080/01621459.2017.1340887. Epub 2018 Oct 8.

Abstract

Medical therapy often consists of multiple stages, with a treatment chosen by the physician at each stage based on the patient's history of treatments and clinical outcomes. These decisions can be formalized as a dynamic treatment regime. This paper describes a new approach for optimizing dynamic treatment regimes that bridges the gap between Bayesian inference and existing approaches, like Q-learning. The proposed approach fits a series of Bayesian regression models, one for each stage, in reverse sequential order. Each model uses as a response variable the remaining payoff assuming optimal actions are taken at subsequent stages, and as covariates the current history and relevant actions at that stage. The key difficulty is that the optimal decision rules at subsequent stages are unknown, and even if these decision rules were known the relevant response variables may be counterfactual. However, posterior distributions can be derived from the previously fitted regression models for the optimal decision rules and the counterfactual response variables under a particular set of rules. The proposed approach averages over these posterior distributions when fitting each regression model. An efficient sampling algorithm for estimation is presented, along with simulation studies that compare the proposed approach with Q-learning.

摘要

医学治疗通常包括多个阶段,医生在每个阶段会根据患者的治疗史和临床结果选择一种治疗方法。这些决策可以形式化为动态治疗方案。本文描述了一种优化动态治疗方案的新方法,该方法弥合了贝叶斯推断与现有方法(如Q学习)之间的差距。所提出的方法以反向顺序拟合一系列贝叶斯回归模型,每个阶段一个。每个模型将假设在后续阶段采取最优行动时的剩余收益作为响应变量,并将当前历史和该阶段的相关行动作为协变量。关键困难在于后续阶段的最优决策规则是未知的,而且即使这些决策规则已知,相关的响应变量也可能是反事实的。然而,在特定的一组规则下,可以从先前拟合的回归模型中推导出最优决策规则和反事实响应变量的后验分布。所提出的方法在拟合每个回归模型时对这些后验分布进行平均。还提出了一种用于估计的有效抽样算法,以及将所提出的方法与Q学习进行比较的模拟研究。

相似文献

5
Bayesian inference for optimal dynamic treatment regimes in practice.贝叶斯推断在实践中最优动态治疗方案的应用。
Int J Biostat. 2023 May 17;19(2):309-331. doi: 10.1515/ijb-2022-0073. eCollection 2023 Nov 1.
8
Interactive Q-learning for Quantiles.用于分位数的交互式Q学习
J Am Stat Assoc. 2017;112(518):638-649. doi: 10.1080/01621459.2016.1155993. Epub 2017 Mar 31.
10
Entropy Learning for Dynamic Treatment Regimes.动态治疗方案的熵学习
Stat Sin. 2019;29(4):1633-1655. doi: 10.5705/ss.202018.0076.

引用本文的文献

7
Designing Optimal, Data-Driven Policies from Multisite Randomized Trials.从多中心随机试验中设计最佳的数据驱动政策。
Psychometrika. 2023 Dec;88(4):1171-1196. doi: 10.1007/s11336-023-09937-2. Epub 2023 Oct 24.
8
Interpreting Randomized Controlled Trials.解读随机对照试验
Cancers (Basel). 2023 Sep 22;15(19):4674. doi: 10.3390/cancers15194674.

本文引用的文献

6
Dynamic Treatment Regimes.动态治疗方案
Annu Rev Stat Appl. 2014;1:447-464. doi: 10.1146/annurev-statistics-022513-115553.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验