Wang Zhenwu, Wei Hua, Huang Youju, Wei Yen, Chen Jing
Institute of Medical Sciences, The Second Hospital and Shandong University Center for Orthopaedics, Cheeloo College of Medicine, Shandong University, Jinan 250033, China.
Karlsruhe Institute of Technology (KIT), Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
Chem Soc Rev. 2023 May 9;52(9):2992-3034. doi: 10.1039/d2cs00813k.
The flourishing development of flexible healthcare sensing systems is inseparable from the fundamental materials with application-oriented mechanical and electrical properties. Thanks to continuous inspiration from our Mother Nature, flexible hydrogels originating from natural biomass are attracting growing attention for their structural and functional designs owing to their unique chemical, physical and biological properties. These highly efficient architectural and functional designs enable them to be the most promising candidates for flexible electronic sensing devices. This comprehensive review focuses on the recent advances in naturally sourced hydrogels for constructing multi-functional flexible sensors and healthcare applications thereof. We first briefly introduce representative natural polymers, including polysaccharides, proteins, and polypeptides, and summarize their unique physicochemical properties. The design principles and fabrication strategies for hydrogel sensors based on these representative natural polymers are outlined after the fundamental material properties required in healthcare sensing applications are presented. We then highlight the various fabrication techniques of natural hydrogels for sensing devices, and illustrate the representative examples of wearable or implantable bioelectronics for pressure, strain, temperature, or biomarker sensing in the field of healthcare systems. Finally, concluding remarks on challenges and prospects in the development of natural hydrogel-based flexible sensors are provided. We hope that this review will provide valuable information for the development of next-generation bioelectronics and build a bridge between the natural hydrogels as fundamental matter and multi-functional healthcare sensing as an applied target to accelerate new material design in the near future.
柔性医疗传感系统的蓬勃发展离不开具有面向应用的机械和电学性能的基础材料。得益于大自然的不断启发,源自天然生物质的柔性水凝胶因其独特的化学、物理和生物学特性,在结构和功能设计方面正吸引着越来越多的关注。这些高效的结构和功能设计使其成为柔性电子传感设备最有前途的候选材料。这篇综述聚焦于用于构建多功能柔性传感器及其医疗应用的天然来源水凝胶的最新进展。我们首先简要介绍代表性的天然聚合物,包括多糖、蛋白质和多肽,并总结它们独特的物理化学性质。在介绍了医疗传感应用所需的基本材料特性之后,概述了基于这些代表性天然聚合物的水凝胶传感器的设计原理和制造策略。然后,我们重点介绍了用于传感设备的天然水凝胶的各种制造技术,并举例说明了医疗保健系统领域中用于压力、应变、温度或生物标志物传感的可穿戴或可植入生物电子学的代表性实例。最后,对基于天然水凝胶的柔性传感器开发中的挑战和前景给出总结性评论。我们希望这篇综述将为下一代生物电子学的发展提供有价值的信息,并在作为基础材料的天然水凝胶和作为应用目标的多功能医疗传感之间架起一座桥梁,以加速在不久的将来的新材料设计。