文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

整合深度学习与实时成像以可视化由蛋白质和多糖纤维形成的自愈合互穿聚合物网络的原位自组装。

Integrating Deep Learning and Real-Time Imaging to Visualize In Situ Self-Assembly of Self-Healing Interpenetrating Polymer Networks Formed by Protein and Polysaccharide Fibers.

作者信息

Pelayo-Punzano Gloria, Cuesta Rafael, Calvino José J, Domínguez-Vera José M, López-Haro Miguel, de Vicente Juan, Gálvez Natividad

机构信息

Department of Inorganic Chemistry, University of Granada, 18071 Granada, Spain.

Department of Organic and Inorganic Chemistry, EPS Linares, University of Jaén, 23700 Linares, Spain.

出版信息

ACS Appl Mater Interfaces. 2025 Aug 20;17(33):46771-46785. doi: 10.1021/acsami.5c11459. Epub 2025 Aug 5.


DOI:10.1021/acsami.5c11459
PMID:40762431
Abstract

Fibrillar protein hydrogels are promising sustainable biomaterials for biomedical applications, but their practical use is often limited by insufficient mechanical strength and stability. To address these challenges, we transformed native proteins into amyloid fibrils (AFs) and incorporated a fibrillar polysaccharide, phytagel (PHY), to engineer interpenetrating polymer network (IPN) hydrogels. Notably, we report for the first time the formation of an amyloid-based hydrogel from apoferritin (APO), with PHY reinforcing the network's mechanical integrity. In situ self-assembly of APO within the PHY matrix yields fully natural, biopolymer-based IPNs. Rheological analyses confirm synergistic interactions between AF and PHY fibers, with the composite hydrogels exhibiting significantly enhanced viscoelastic moduli compared with individual components. The AF-PHY hydrogels also demonstrate excellent self-healing behavior, rapidly restoring their storage modulus after high-strain deformation. A major advancement of this study is the application of deep learning (DL)-based image analysis, using convolutional neural networks, to automate the identification, segmentation, and quantification of fibrillar components in high-resolution scanning electron microscopy images. This AI-driven method enables precise differentiation between AF and PHY fibers and reveals the three-dimensional microarchitecture of the IPN, overcoming key limitations of traditional image analysis. Complementary real-time confocal laser scanning microscopy, with selective fluorescent labeling of protein and polysaccharide components, further validates the IPN structure of the hybrid hydrogels. Our results demonstrate that DL significantly enhances structural characterization and provides insights into gelation processes. This approach sets a new guide for the analysis of complex soft materials and underlines the potential of AF-PHY hydrogels as mechanically robust, self-healing, and fully sustainable biomaterials for biomedical engineering applications.

摘要

纤维状蛋白质水凝胶是用于生物医学应用的很有前景的可持续生物材料,但其实际应用常常受到机械强度和稳定性不足的限制。为应对这些挑战,我们将天然蛋白质转化为淀粉样纤维(AFs),并引入一种纤维状多糖——植物凝胶(PHY),以构建互穿聚合物网络(IPN)水凝胶。值得注意的是,我们首次报道了由脱铁铁蛋白(APO)形成基于淀粉样蛋白的水凝胶,其中PHY增强了网络的机械完整性。APO在PHY基质内原位自组装产生完全天然的、基于生物聚合物的IPN。流变学分析证实了AF和PHY纤维之间的协同相互作用,与单个组分相比,复合水凝胶表现出显著增强的粘弹性模量。AF-PHY水凝胶还表现出优异的自愈行为,在高应变变形后能迅速恢复其储能模量。本研究的一个主要进展是应用基于深度学习(DL)的图像分析,使用卷积神经网络,自动识别、分割和量化高分辨率扫描电子显微镜图像中的纤维状组分。这种人工智能驱动的方法能够精确区分AF和PHY纤维,并揭示IPN的三维微结构,克服了传统图像分析的关键局限性。互补的实时共聚焦激光扫描显微镜,通过对蛋白质和多糖组分进行选择性荧光标记,进一步验证了混合水凝胶的IPN结构。我们的结果表明,DL显著增强了结构表征,并为凝胶化过程提供了见解。这种方法为分析复杂软材料设定了新的指导方针,并强调了AF-PHY水凝胶作为用于生物医学工程应用的机械坚固、自愈且完全可持续的生物材料的潜力。

相似文献

[1]
Integrating Deep Learning and Real-Time Imaging to Visualize In Situ Self-Assembly of Self-Healing Interpenetrating Polymer Networks Formed by Protein and Polysaccharide Fibers.

ACS Appl Mater Interfaces. 2025-8-20

[2]
Prescription of Controlled Substances: Benefits and Risks

2025-1

[3]
Anterior Approach Total Ankle Arthroplasty with Patient-Specific Cut Guides.

JBJS Essent Surg Tech. 2025-8-15

[4]
Antibacterial collagen-guar gum hydrogels with zeolitic imidazolate framework-67 (ZIF-67): an innovative platform for advanced wound healing.

J Biomater Sci Polym Ed. 2025-9

[5]
Short-Term Memory Impairment

2025-1

[6]
Spatiotemporal self-reinforcing hydrogel spray with antibacterial and anti-inflammatory properties for accelerated diabetic wound healing.

Acta Biomater. 2025-6-20

[7]
A deep learning approach to direct immunofluorescence pattern recognition in autoimmune bullous diseases.

Br J Dermatol. 2024-7-16

[8]
CXR-MultiTaskNet a unified deep learning framework for joint disease localization and classification in chest radiographs.

Sci Rep. 2025-8-31

[9]
Thermoresponsive polymers for cell support: poloxamers as a case study of promise and challenge.

J Mater Chem B. 2025-8-6

[10]
Management of urinary stones by experts in stone disease (ESD 2025).

Arch Ital Urol Androl. 2025-6-30

本文引用的文献

[1]
Emerging Frontiers in Forming Hydrogels for Enhanced Hemostasis and Accelerated Wound Healing.

ACS Appl Mater Interfaces. 2024-11-13

[2]
Advances in Functionalized Hydrogels in the Treatment of Myocardial Infarction and Drug-Delivery Strategies.

ACS Appl Mater Interfaces. 2024-9-18

[3]
Preparation and drug release performance of different gelation type polysaccharide/β-lactoglobulin fiber composite gels.

Int J Biol Macromol. 2024-6

[4]
Casein-based hydrogels: Advances and prospects.

Food Chem. 2024-7-30

[5]
Exploring the potential of polysaccharide-based hybrid hydrogel systems for their biomedical and therapeutic applications: A review.

Int J Biol Macromol. 2024-1

[6]
Nanoconfined polymerization limits crack propagation in hysteresis-free gels.

Nat Mater. 2024-1

[7]
Design principles of food gels.

Nat Food. 2020-2

[8]
Naturally sourced hydrogels: emerging fundamental materials for next-generation healthcare sensing.

Chem Soc Rev. 2023-5-9

[9]
Polymer Complex Fiber: Property, Functionality, and Applications.

ACS Appl Mater Interfaces. 2023-2-15

[10]
Amyloid-Based Albumin Hydrogels.

Adv Healthc Mater. 2023-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索