Suppr超能文献

对非特异性下腰痛进行分类以获得更好的临床结果:当前挑战与未来方向。

Classifying Nonspecific Low Back Pain for Better Clinical Outcomes: Current Challenges and Paths Forward.

作者信息

Tagliaferri Scott D, Owen Patrick J, Miller Clint T, Mitchell Ulrike H, Ehrenbrusthoff Katja, Belavy Daniel L

机构信息

Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Australia.

Orygen, Parkville, Australia.

出版信息

J Orthop Sports Phys Ther. 2023 May;53(5):239–243. doi: 10.2519/jospt.2023.11658.

Abstract

Low back pain classification systems are structured assessments used to guide choices of more specific treatments. Classification systems examined in randomized controlled trials have limited effects on pain intensity and disability compared to nonclassified interventions. Potential reasons for the lack of efficacy include (1) failing to assess multidimensional factors that contribute to pain, (2) relying on clinician judgement, (3) low accessibility, and (4) poor classification reliability. Overcoming these limitations is critical to deciding whether classification systems can improve clinical practice. Only once these limitations are addressed, can we feel certain about the efficacy, or lack thereof, of classification systems. This Viewpoint guides the reader through some limitations of common classification approaches and presents a path forward to open-access, reliable, and multidimensional precision medicine for managing low back pain. .

摘要

腰痛分类系统是用于指导更具体治疗选择的结构化评估方法。与未分类的干预措施相比,随机对照试验中所研究的分类系统对疼痛强度和残疾状况的影响有限。疗效欠佳的潜在原因包括:(1)未能评估导致疼痛的多维度因素;(2)依赖临床医生的判断;(3)可及性低;(4)分类可靠性差。克服这些局限性对于确定分类系统能否改善临床实践至关重要。只有解决了这些局限性,我们才能确定分类系统是否有效。本观点文章引导读者了解常见分类方法的一些局限性,并提出一条通向开放获取、可靠且多维度的精准医学以管理腰痛的前进道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验