Lou Tingting, Li Annan, Xu Houchao, Pan Jingfeng, Xing Baiying, Wu Ruibo, Dickschat Jeroen S, Yang Donghui, Ma Ming
State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China.
Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany.
J Am Chem Soc. 2023 Apr 5. doi: 10.1021/jacs.3c00278.
The cyclization of farnesyl diphosphate (FPP) into highly strained polycyclic sesquiterpenes is challenging. We here determined the crystal structures of three sesquiterpene synthases (STSs, namely, BcBOT2, DbPROS, and CLM1) catalyzing the biosynthesis of the tricyclic sesquiterpenes presilphiperfolan-8β-ol (), Δ-protoilludene (), and longiborneol (). All three STS structures contain a substrate mimic, the benzyltriethylammonium cation (BTAC), in their active sites, providing ideal templates for quantum mechanics/molecular mechanics (QM/MM) analyses toward their catalytic mechanisms. The QM/MM-based molecular dynamics (MD) simulations revealed the cascade reactions toward the enzyme products, and different key active site residues that play important roles in stabilizing reactive carbocation intermediates along the three pathways. Site-directed mutagenesis experiments confirmed the roles of these key residues and concomitantly resulted in 17 shunt products (-). Isotopic labeling experiments addressed the key hydride and methyl migrations toward the main and several shunt products. These combined methods provided deep insights into the catalytic mechanisms of the three STSs and demonstrated how the chemical space of STSs can rationally be expanded, which may facilitate applications in synthetic biology approaches toward pharmaceutical and perfumery agents.
将法尼基二磷酸(FPP)环化生成高度张力的多环倍半萜具有挑战性。我们在此确定了三种倍半萜合酶(STSs,即BcBOT2、DbPROS和CLM1)的晶体结构,它们催化三环倍半萜前硅叶perfolan - 8β - 醇、Δ - 原伊鲁烯和长叶龙脑醇的生物合成。所有这三种STSs结构在其活性位点均含有底物模拟物苄基三乙铵阳离子(BTAC),为针对其催化机制的量子力学/分子力学(QM/MM)分析提供了理想模板。基于QM/MM的分子动力学(MD)模拟揭示了生成酶产物的级联反应,以及在三条途径中对稳定反应性碳正离子中间体起重要作用的不同关键活性位点残基。定点诱变实验证实了这些关键残基的作用,并同时产生了17种分流产物。同位素标记实验确定了朝向主要产物和几种分流产物的关键氢化物和甲基迁移。这些综合方法深入洞察了这三种STSs的催化机制,并展示了如何合理扩展STSs的化学空间,这可能有助于在合成生物学方法中应用于制药和香料试剂。