Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.
Biochemistry. 2024 Mar 19;63(6):797-805. doi: 10.1021/acs.biochem.3c00681. Epub 2024 Feb 29.
The sesquiterpene cyclase -isozizaene synthase (EIZS) from catalyzes the metal-dependent conversion of farnesyl diphosphate (FPP) into the complex tricyclic product -isozizaene. This remarkable transformation is governed by an active site contour that serves as a template for catalysis, directing the conformations of multiple carbocation intermediates leading to the final product. Mutagenesis of residues defining the active site contour remolds its three-dimensional shape and reprograms the cyclization cascade to generate alternative cyclization products. In some cases, mutagenesis enables alternative chemistry to quench carbocation intermediates, e.g., through hydroxylation. Here, we combine structural and biochemical data from previously characterized EIZS mutants to design and prepare F95S-F198S EIZS, which converts EIZS into an α-bisabolol synthase with moderate fidelity (65% at 18 °C, 74% at 4 °C). We report the complete biochemical characterization of this double mutant as well as the 1.47 Å resolution X-ray crystal structure of its complex with three Mg ions, inorganic pyrophosphate, and the benzyltriethylammonium cation, which partially mimics a carbocation intermediate. Most notably, the two mutations together create an active site contour that stabilizes the bisabolyl carbocation intermediate and positions a water molecule for the hydroxylation reaction. Structural comparison with a naturally occurring α-bisabolol synthase reveals common active site features that direct α-bisabolol generation. In showing that EIZS can be redesigned to generate a sesquiterpene alcohol product instead of a sesquiterpene hydrocarbon product, we have expanded the potential of EIZS as a platform for the development of designer cyclases that could be utilized in synthetic biology applications.
倍半萜环化酶-异泽兰烯合酶(EIZS)来自 ,催化法呢基二磷酸(FPP)在金属依赖性转化为复杂的三环产物异泽兰烯。这种显著的转化受活性位点轮廓的控制,该轮廓作为催化的模板,指导多个碳正离子中间体的构象,从而得到最终产物。定义活性位点轮廓的残基的突变重塑了其三维形状,并重新编程环化级联反应以生成替代环化产物。在某些情况下,突变使替代化学物质能够猝灭碳正离子中间体,例如通过羟化。在这里,我们结合以前表征的 EIZS 突变体的结构和生化数据,设计并制备了 F95S-F198S EIZS,它将 EIZS 转化为具有中等保真度的 α-毕赤醇合酶(在 18°C 时为 65%,在 4°C 时为 74%)。我们报告了该双突变体的完整生化特征以及其与三个 Mg 离子、无机焦磷酸和苄基三乙基铵阳离子复合物的 1.47 Å 分辨率 X 射线晶体结构,该结构部分模拟了碳正离子中间体。最值得注意的是,这两个突变一起创造了一个活性位点轮廓,稳定了毕赤醇碳正离子中间体,并为羟化反应定位了一个水分子。与天然存在的 α-毕赤醇合酶的结构比较揭示了指导 α-毕赤醇生成的共同活性位点特征。通过表明 EIZS 可以被重新设计为生成倍半萜醇产物而不是倍半萜烃产物,我们扩展了 EIZS 作为用于开发可用于合成生物学应用的设计环化酶的平台的潜力。