Academy of Medical Engineering and Translational Medicine, Tianjin Key Laboratory of Brain Science and Neural Engineering, Xincheng Hospital of Tianjin University, Tianjin University, Tianjin 300072, China.
Department of Stomatology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, China.
ACS Nano. 2023 Apr 25;17(8):7511-7529. doi: 10.1021/acsnano.2c12614. Epub 2023 Apr 5.
Catalysts have achieved efficacy in scavenging reactive oxygen species (ROS) to eliminate neuroinflammation, but it ignores the essential fact of blocking the source of ROS regeneration. Here, we report the single-atom catalysts (SACs) Pt/CeO, which can effectively catalyze the breakdown of existing ROS and induce mitochondrial membrane potential (Δψ) depolarization by interfering with the α-glycerophosphate shuttle pathway and malate-aspartate shuttle pathway, indirectly triggering the self-clearance of dysfunctional mitochondria and thus eradicating the source of ROS generation. In a therapeutic model of Parkinson's disease (PD), Pt/CeO wrapped by neutrophil-like (HL-60) cell membranes and modified by rabies virus glycoprotein (RVG29) effectively crosses the blood-brain barrier (BBB), enters dopaminergic neurons entering the neuroinflammatory region breaking down existing ROS and inducing mitophagy by electrostatic adsorption targeting mitochondria to prevent ROS regeneration after catalyst discharge. This strategy of efficiently eliminating ROS at the lesion and fundamentally blocking the source of ROS production can address both symptoms and root causes and provides a mechanism of explanation and action target for the treatment of inflammation-related diseases.
催化剂在清除活性氧 (ROS) 以消除神经炎症方面已经取得了疗效,但它忽略了阻断 ROS 再生源头这一关键事实。在这里,我们报告了单原子催化剂 (SACs) Pt/CeO,它可以通过干扰α-甘油磷酸穿梭途径和苹果酸天冬氨酸穿梭途径,有效催化现有 ROS 的分解,并诱导线粒体膜电位 (Δψ) 去极化,间接触发功能失调线粒体的自清除,从而消除 ROS 产生的源头。在帕金森病 (PD) 的治疗模型中,被中性粒细胞样 (HL-60) 细胞膜包裹并被狂犬病病毒糖蛋白 (RVG29) 修饰的 Pt/CeO 有效地穿过血脑屏障 (BBB),进入多巴胺能神经元进入神经炎症区域,通过静电吸附靶向线粒体分解现有 ROS,并通过诱导自噬来防止催化剂释放后 ROS 的再生。这种在病变部位有效清除 ROS 并从根本上阻断 ROS 产生源头的策略既能治标又能治本,为治疗炎症相关疾病提供了一种机制解释和作用靶点。