Suppr超能文献

DGCddG:用于预测突变后蛋白质-蛋白质结合亲和力变化的深度图卷积。

DGCddG: Deep Graph Convolution for Predicting Protein-Protein Binding Affinity Changes Upon Mutations.

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2023 May-Jun;20(3):2089-2100. doi: 10.1109/TCBB.2022.3233627. Epub 2023 Jun 5.

Abstract

Effectively and accurately predicting the effects of interactions between proteins after amino acid mutations is a key issue for understanding the mechanism of protein function and drug design. In this study, we present a deep graph convolution (DGC) network-based framework, DGCddG, to predict the changes of protein-protein binding affinity after mutation. DGCddG incorporates multi-layer graph convolution to extract a deep, contextualized representation for each residue of the protein complex structure. The mined channels of the mutation sites by DGC is then fitted to the binding affinity with a multi-layer perceptron. Experiments with results on multiple datasets show that our model can achieve relatively good performance for both single and multi-point mutations. For blind tests on datasets related to angiotensin-converting enzyme 2 binding with the SARS-CoV-2 virus, our method shows better results in predicting ACE2 changes, may help in finding favorable antibodies. Code and data availability: https://github.com/lennylv/DGCddG.

摘要

有效准确地预测氨基酸突变后蛋白质相互作用的效果,是理解蛋白质功能机制和药物设计的关键问题。在这项研究中,我们提出了一个基于深度图卷积(DGC)网络的框架 DGCddG,用于预测突变后蛋白质-蛋白质结合亲和力的变化。DGCddG 结合了多层图卷积,为蛋白质复合物结构的每个残基提取深度、上下文化的表示。然后,通过 DGC 挖掘的突变位点通道与多层感知机拟合结合亲和力。在多个数据集上的实验结果表明,我们的模型对于单点和多点突变都能取得较好的性能。对于与 SARS-CoV-2 病毒结合的血管紧张素转换酶 2 的相关数据集的盲测,我们的方法在预测 ACE2 变化方面表现出更好的结果,可能有助于寻找有利的抗体。代码和数据可在 https://github.com/lennylv/DGCddG 上获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验