Suppr超能文献

基于图掩蔽自蒸馏学习的蛋白质-蛋白质相互作用突变影响预测。

Graph masked self-distillation learning for prediction of mutation impact on protein-protein interactions.

机构信息

Key Laboratory of Intelligent Computing and Information Processing of Ministry of Education, Xiangtan University, Xiangtan, 411105, China.

Department of Computational Biology, Cornell University, Ithaca, NY, 14853, USA.

出版信息

Commun Biol. 2024 Oct 26;7(1):1400. doi: 10.1038/s42003-024-07066-9.

Abstract

Assessing mutation impact on the binding affinity change (ΔΔG) of protein-protein interactions (PPIs) plays a crucial role in unraveling structural-functional intricacies of proteins and developing innovative protein designs. In this study, we present a deep learning framework, PIANO, for improved prediction of ΔΔG in PPIs. The PIANO framework leverages a graph masked self-distillation scheme for protein structural geometric representation pre-training, which effectively captures the structural context representations surrounding mutation sites, and makes predictions using a multi-branch network consisting of multiple encoders for amino acids, atoms, and protein sequences. Extensive experiments demonstrated its superior prediction performance and the capability of pre-trained encoder in capturing meaningful representations. Compared to previous methods, PIANO can be widely applied on both holo complex structures and apo monomer structures. Moreover, we illustrated the practical applicability of PIANO in highlighting pathogenic mutations and crucial proteins, and distinguishing de novo mutations in disease cases and controls in PPI systems. Overall, PIANO offers a powerful deep learning tool, which may provide valuable insights into the study of drug design, therapeutic intervention, and protein engineering.

摘要

评估蛋白质-蛋白质相互作用(PPIs)中突变对结合亲和力变化(ΔΔG)的影响,对于揭示蛋白质的结构-功能复杂性和开发创新的蛋白质设计至关重要。在这项研究中,我们提出了一个深度学习框架 PIANO,用于改进 PPI 中 ΔΔG 的预测。PIANO 框架利用图掩蔽自蒸馏方案进行蛋白质结构几何表示预训练,该方案有效地捕获了突变位点周围的结构上下文表示,并使用由多个氨基酸、原子和蛋白质序列编码器组成的多分支网络进行预测。广泛的实验证明了其优越的预测性能和预训练编码器在捕获有意义表示方面的能力。与以前的方法相比,PIANO 可以广泛应用于全酶复合物结构和脱辅基单体结构。此外,我们说明了 PIANO 在突出致病性突变和关键蛋白质、区分疾病病例和对照中的从头突变方面的实际适用性,以及在 PPI 系统中。总的来说,PIANO 提供了一个强大的深度学习工具,可为药物设计、治疗干预和蛋白质工程的研究提供有价值的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/253c/11513059/2e25462b5d26/42003_2024_7066_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验