Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA.
Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA.
Nat Commun. 2022 Jun 29;13(1):3746. doi: 10.1038/s41467-022-31279-3.
Engineering subcellular organization in microbes shows great promise in addressing bottlenecks in metabolic engineering efforts; however, rules guiding selection of an organization strategy or platform are lacking. Here, we study compartment morphology as a factor in mediating encapsulated pathway performance. Using the 1,2-propanediol utilization microcompartment (Pdu MCP) system from Salmonella enterica serovar Typhimurium LT2, we find that we can shift the morphology of this protein nanoreactor from polyhedral to tubular by removing vertex protein PduN. Analysis of the metabolic function between these Pdu microtubes (MTs) shows that they provide a diffusional barrier capable of shielding the cytosol from a toxic pathway intermediate, similar to native MCPs. However, kinetic modeling suggests that the different surface area to volume ratios of MCP and MT structures alters encapsulated pathway performance. Finally, we report a microscopy-based assay that permits rapid assessment of Pdu MT formation to enable future engineering efforts on these structures.
在微生物中构建亚细胞结构在解决代谢工程中的瓶颈问题方面显示出巨大的潜力;然而,指导选择组织策略或平台的规则还缺乏。在这里,我们研究了隔室形态作为调节封装途径性能的因素。我们使用来自沙门氏菌 LT2 的 1,2-丙二醇利用微隔间 (Pdu MCP) 系统,发现通过去除顶点蛋白 PduN,我们可以将这种蛋白质纳米反应器的形态从多面体转变为管状。对这些 Pdu 微管 (MT) 的代谢功能进行分析表明,它们提供了一种扩散屏障,能够将细胞质与有毒途径中间体隔离开来,类似于天然 MCP。然而,动力学模型表明,MCP 和 MT 结构的不同表面积与体积比会改变封装途径的性能。最后,我们报告了一种基于显微镜的测定方法,可快速评估 Pdu MT 的形成,从而为这些结构的未来工程努力提供支持。