Clinical and Translational Neuroscience Unit, Feil Family Brain and Mind Research Institute and Department of Neurology, Weill Cornell Medicine, Bronx, USA.
Division of Biostatistics and Bioinformatics, The Johns Hopkins University School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Baltimore, USA.
Diagnosis (Berl). 2023 Apr 5;10(3):225-234. doi: 10.1515/dx-2022-0130. eCollection 2023 Aug 1.
Diagnostic errors in medicine represent a significant public health problem but continue to be challenging to measure accurately, reliably, and efficiently. The recently developed Symptom-Disease Pair Analysis of Diagnostic Error (SPADE) approach measures misdiagnosis related harms using electronic health records or administrative claims data. The approach is clinically valid, methodologically sound, statistically robust, and operationally viable without the requirement for manual chart review. This paper clarifies aspects of the SPADE analysis to assure that researchers apply this method to yield valid results with a particular emphasis on defining appropriate comparator groups and analytical strategies for balancing differences between these groups. We discuss four distinct types of comparators (intra-group and inter-group for both look-back and look-forward analyses), detailing the rationale for choosing one over the other and inferences that can be drawn from these comparative analyses. Our aim is that these additional analytical practices will improve the validity of SPADE and related approaches to quantify diagnostic error in medicine.
医学中的诊断错误是一个重大的公共卫生问题,但要准确、可靠和有效地衡量这些错误仍然具有挑战性。最近开发的诊断错误症状-疾病对分析(SPADE)方法使用电子健康记录或行政索赔数据来衡量误诊相关的危害。该方法具有临床有效性、方法学合理性、统计学稳健性和可操作性,无需进行手动图表审查。本文澄清了 SPADE 分析的各个方面,以确保研究人员应用该方法得出有效的结果,特别强调为平衡这些组之间的差异定义适当的对照组和分析策略。我们讨论了四种不同类型的对照(回顾性和前瞻性分析的组内和组间对照),详细说明了选择一种对照而不是另一种对照的理由,以及可以从这些比较分析中得出的推论。我们的目的是,这些额外的分析实践将提高 SPADE 及相关方法的有效性,以量化医学中的诊断错误。