Suppr超能文献

症状-疾病关联分析诊断错误(SPADE):一种利用大数据挖掘与误诊相关伤害的概念框架和方法学方法。

Symptom-Disease Pair Analysis of Diagnostic Error (SPADE): a conceptual framework and methodological approach for unearthing misdiagnosis-related harms using big data.

机构信息

Department of Neurology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York, USA.

Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.

出版信息

BMJ Qual Saf. 2018 Jul;27(7):557-566. doi: 10.1136/bmjqs-2017-007032. Epub 2018 Jan 22.

Abstract

BACKGROUND

The public health burden associated with diagnostic errors is likely enormous, with some estimates suggesting millions of individuals are harmed each year in the USA, and presumably many more worldwide. According to the US National Academy of Medicine, improving diagnosis in healthcare is now considered 'a moral, professional, and public health imperative.' Unfortunately, well-established, valid and readily available operational measures of diagnostic performance and misdiagnosis-related harms are lacking, hampering progress. Existing methods often rely on judging errors through labour-intensive human reviews of medical records that are constrained by poor clinical documentation, low reliability and hindsight bias.

METHODS

Key gaps in operational measurement might be filled via thoughtful statistical analysis of existing large clinical, billing, administrative claims or similar data sets. In this manuscript, we describe a method to quantify and monitor diagnostic errors using an approach we call 'Symptom-Disease Pair Analysis of Diagnostic Error' (SPADE).

RESULTS

We first offer a conceptual framework for establishing valid symptom-disease pairs illustrated using the well-known diagnostic error dyad of dizziness-stroke. We then describe analytical methods for both look-back (case-control) and look-forward (cohort) measures of diagnostic error and misdiagnosis-related harms using 'big data'. After discussing the strengths and limitations of the SPADE approach by comparing it to other strategies for detecting diagnostic errors, we identify the sources of validity and reliability that undergird our approach.

CONCLUSION

SPADE-derived metrics could eventually be used for operational diagnostic performance dashboards and national benchmarking. This approach has the potential to transform diagnostic quality and safety across a broad range of clinical problems and settings.

摘要

背景

与诊断错误相关的公共卫生负担可能是巨大的,一些估计表明,每年在美国有数百万患者受到伤害,而全球范围内可能更多。根据美国国家医学院的说法,改善医疗保健中的诊断现在被认为是“道德、专业和公共卫生的当务之急”。不幸的是,缺乏经过充分验证、有效且易于获得的诊断性能和误诊相关危害的操作测量方法,这阻碍了进展。现有的方法通常依赖于通过对医疗记录进行劳动密集型的人工审查来判断错误,而这些记录受到临床记录不佳、可靠性低和后见之明偏差的限制。

方法

通过对现有的大型临床、计费、行政索赔或类似数据集进行深思熟虑的统计分析,可能会填补操作测量中的关键差距。在本文中,我们描述了一种使用我们称之为“诊断错误症状-疾病对分析”(SPADE)的方法来量化和监测诊断错误的方法。

结果

我们首先提供了一个建立有效症状-疾病对的概念框架,使用著名的诊断错误对偶眩晕-中风来说明。然后,我们描述了使用“大数据”进行回顾性(病例对照)和前瞻性(队列)诊断错误和误诊相关危害测量的分析方法。在通过与其他检测诊断错误的策略进行比较来讨论 SPADE 方法的优缺点之后,我们确定了支撑我们方法的有效性和可靠性的来源。

结论

SPADE 衍生的指标最终可用于操作诊断性能仪表板和国家基准测试。这种方法有可能改变广泛的临床问题和环境中的诊断质量和安全性。

相似文献

5
10
Burden of serious harms from diagnostic error in the USA.美国诊断错误导致的严重危害负担。
BMJ Qual Saf. 2024 Jan 19;33(2):109-120. doi: 10.1136/bmjqs-2021-014130.

引用本文的文献

5
Harbingers of sepsis misdiagnosis among pediatric emergency department patients.儿科急诊科患者中脓毒症误诊的先兆
Diagnosis (Berl). 2024 Dec 12;12(2):241-249. doi: 10.1515/dx-2024-0119. eCollection 2025 May 1.
8
Machine Learning to Enhance Electronic Detection of Diagnostic Errors.机器学习助力增强诊断错误的电子检测
JAMA Netw Open. 2024 Sep 3;7(9):e2431982. doi: 10.1001/jamanetworkopen.2024.31982.
9
Automating detection of diagnostic error of infectious diseases using machine learning.利用机器学习自动检测传染病诊断错误
PLOS Digit Health. 2024 Jun 7;3(6):e0000528. doi: 10.1371/journal.pdig.0000528. eCollection 2024 Jun.

本文引用的文献

8
The global burden of diagnostic errors in primary care.基层医疗中诊断错误的全球负担。
BMJ Qual Saf. 2017 Jun;26(6):484-494. doi: 10.1136/bmjqs-2016-005401. Epub 2016 Aug 16.
9
The challenges in defining and measuring diagnostic error.定义和衡量诊断错误中的挑战。
Diagnosis (Berl). 2015 Jun;2(2):97-103. doi: 10.1515/dx-2014-0069. Epub 2015 Mar 12.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验