Department of Neurology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York, USA.
Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
BMJ Qual Saf. 2018 Jul;27(7):557-566. doi: 10.1136/bmjqs-2017-007032. Epub 2018 Jan 22.
The public health burden associated with diagnostic errors is likely enormous, with some estimates suggesting millions of individuals are harmed each year in the USA, and presumably many more worldwide. According to the US National Academy of Medicine, improving diagnosis in healthcare is now considered 'a moral, professional, and public health imperative.' Unfortunately, well-established, valid and readily available operational measures of diagnostic performance and misdiagnosis-related harms are lacking, hampering progress. Existing methods often rely on judging errors through labour-intensive human reviews of medical records that are constrained by poor clinical documentation, low reliability and hindsight bias.
Key gaps in operational measurement might be filled via thoughtful statistical analysis of existing large clinical, billing, administrative claims or similar data sets. In this manuscript, we describe a method to quantify and monitor diagnostic errors using an approach we call 'Symptom-Disease Pair Analysis of Diagnostic Error' (SPADE).
We first offer a conceptual framework for establishing valid symptom-disease pairs illustrated using the well-known diagnostic error dyad of dizziness-stroke. We then describe analytical methods for both look-back (case-control) and look-forward (cohort) measures of diagnostic error and misdiagnosis-related harms using 'big data'. After discussing the strengths and limitations of the SPADE approach by comparing it to other strategies for detecting diagnostic errors, we identify the sources of validity and reliability that undergird our approach.
SPADE-derived metrics could eventually be used for operational diagnostic performance dashboards and national benchmarking. This approach has the potential to transform diagnostic quality and safety across a broad range of clinical problems and settings.
与诊断错误相关的公共卫生负担可能是巨大的,一些估计表明,每年在美国有数百万患者受到伤害,而全球范围内可能更多。根据美国国家医学院的说法,改善医疗保健中的诊断现在被认为是“道德、专业和公共卫生的当务之急”。不幸的是,缺乏经过充分验证、有效且易于获得的诊断性能和误诊相关危害的操作测量方法,这阻碍了进展。现有的方法通常依赖于通过对医疗记录进行劳动密集型的人工审查来判断错误,而这些记录受到临床记录不佳、可靠性低和后见之明偏差的限制。
通过对现有的大型临床、计费、行政索赔或类似数据集进行深思熟虑的统计分析,可能会填补操作测量中的关键差距。在本文中,我们描述了一种使用我们称之为“诊断错误症状-疾病对分析”(SPADE)的方法来量化和监测诊断错误的方法。
我们首先提供了一个建立有效症状-疾病对的概念框架,使用著名的诊断错误对偶眩晕-中风来说明。然后,我们描述了使用“大数据”进行回顾性(病例对照)和前瞻性(队列)诊断错误和误诊相关危害测量的分析方法。在通过与其他检测诊断错误的策略进行比较来讨论 SPADE 方法的优缺点之后,我们确定了支撑我们方法的有效性和可靠性的来源。
SPADE 衍生的指标最终可用于操作诊断性能仪表板和国家基准测试。这种方法有可能改变广泛的临床问题和环境中的诊断质量和安全性。