Department of Epidemiology, 25802 Johns Hopkins University Bloomberg School of Public Health , Baltimore, MD, USA.
5331 IQVIA Inc , San Francisco, CA, USA.
Diagnosis (Berl). 2024 May 3;11(3):295-302. doi: 10.1515/dx-2023-0138. eCollection 2024 Aug 1.
Diagnostic errors are the leading cause of preventable harm in clinical practice. Implementable tools to quantify and target this problem are needed. To address this gap, we aimed to generalize the Symptom-Disease Pair Analysis of Diagnostic Error (SPADE) framework by developing its computable phenotype and then demonstrated how that schema could be applied in multiple clinical contexts.
We created an information model for the SPADE processes, then mapped data fields from electronic health records (EHR) and claims data in use to that model to create the SPADE information model (intention) and the SPADE computable phenotype (extension). Later we validated the computable phenotype and tested it in four case studies in three different health systems to demonstrate its utility.
We mapped and tested the SPADE computable phenotype in three different sites using four different case studies. We showed that data fields to compute an SPADE base measure are fully available in the EHR Data Warehouse for extraction and can operationalize the SPADE framework from provider and/or insurer perspective, and they could be implemented on numerous health systems for future work in monitor misdiagnosis-related harms.
Data for the SPADE base measure is readily available in EHR and administrative claims. The method of data extraction is potentially universally applicable, and the data extracted is conveniently available within a network system. Further study is needed to validate the computable phenotype across different settings with different data infrastructures.
诊断错误是临床实践中可预防伤害的主要原因。需要实施可量化和有针对性的工具来解决这个问题。为了解决这一差距,我们旨在通过开发可计算的表型来推广症状-疾病对诊断错误分析(SPADE)框架,并展示该模式如何在多种临床环境中应用。
我们创建了 SPADE 流程的信息模型,然后将电子健康记录(EHR)和索赔数据中的数据字段映射到该模型,以创建 SPADE 信息模型(意图)和 SPADE 可计算表型(扩展)。后来,我们验证了可计算表型,并在三个不同的医疗系统中的四个案例研究中对其进行了测试,以证明其效用。
我们使用四个不同的案例研究在三个不同的地点映射和测试 SPADE 可计算表型。我们表明,计算 SPADE 基本度量的数据源在 EHR 数据仓库中可用于提取,并可以从提供者和/或保险公司的角度实现 SPADE 框架,并且可以在许多医疗系统中实施,以用于未来监测误诊相关伤害的工作。
EHR 和管理索赔中可获得 SPADE 基本度量的数据。数据提取方法具有潜在的普遍适用性,提取的数据在网络系统中方便可用。需要进一步研究以验证不同设置和不同数据基础设施下的可计算表型。