Suppr超能文献

基于粗率的误诊相关伤害操作性测量的统计见解。

Statistical insights for crude-rate-based operational measures of misdiagnosis-related harms.

机构信息

Division of Biostatistics and Bioinformatics, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.

Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA.

出版信息

Stat Med. 2021 Sep 10;40(20):4430-4441. doi: 10.1002/sim.9039. Epub 2021 Jun 11.

Abstract

In longitudinal event data, a crude rate is a simple quantification of the event rate, defined as the number of events during an evaluation window, divided by the at-risk population size at the beginning or mid-time point of that window. The crude rate recently received revitalizing interest from medical researchers who aimed to improve measurement of misdiagnosis-related harms using administrative or billing data by tracking unexpected adverse events following a "benign" diagnosis. The simplicity of these measures makes them attractive for implementation and routine operational monitoring at hospital or health system level. However, relevant statistical inference procedures have not been systematically summarized. Moreover, it is unclear to what extent the temporal changes of the at-risk population size would bias analyses and affect important conclusions concerning misdiagnosis-related harms. In this article, we present statistical inference tools for using crude-rate based harm measures, as well as formulas and simulation results that quantify the deviation of such measures from those based on the more sophisticated Nelson-Aalen estimator. Moreover, we present results for a generalized multibin version of the crude rate, for which the usual crude rate is a single-bin special case. The generalized multibin crude rate is more straightforward to compute than the Nelson-Aalen estimator and can reduce potential biases of the single-bin crude rate. For studies that seek to use multibin measures, we provide simulations to guide the choice regarding number of bins. We further bolster these results using a worked example of stroke after "benign" dizziness from a large data set.

摘要

在纵向事件数据中,粗率是对事件率的简单量化,定义为评估窗口期间发生的事件数除以该窗口起始或中点时的风险人群规模。最近,粗率受到医学研究人员的关注,他们希望通过跟踪“良性”诊断后出现的意外不良事件,利用行政或计费数据来改进与误诊相关的危害的测量。这些措施简单易用,对于在医院或医疗系统层面实施和常规操作监测具有吸引力。然而,相关的统计推断程序尚未得到系统总结。此外,风险人群规模的时间变化会在多大程度上影响分析并影响与误诊相关的危害的重要结论尚不清楚。在本文中,我们提出了基于粗率的危害测量的统计推断工具,以及公式和模拟结果,这些结果量化了这些测量值与基于更复杂的 Nelson-Aalen 估计器的测量值之间的偏差。此外,我们还介绍了广义多-bin 版粗率的结果,其中常用的粗率是单-bin 特殊情况。广义多-bin 粗率比 Nelson-Aalen 估计器更容易计算,并且可以减少单-bin 粗率的潜在偏差。对于希望使用多-bin 测量值的研究,我们提供了模拟结果来指导关于 bin 数量的选择。我们进一步使用大型数据集“良性”头晕后中风的示例工作来支持这些结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f410/8365112/0781a5af8278/nihms-1706762-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验