Suppr超能文献

基于脑电图的睡眠阶段分类:通过神经架构搜索实现

EEG-Based Sleep Stage Classification via Neural Architecture Search.

作者信息

Kong Gangwei, Li Chang, Peng Hu, Han Zhihui, Qiao Heyuan

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2023;31:1075-1085. doi: 10.1109/TNSRE.2023.3238764. Epub 2023 Feb 6.

Abstract

With the improvement of quality of life, people are more and more concerned about the quality of sleep. The electroencephalogram (EEG)-based sleep stage classification is a good guide for sleep quality and sleep disorders. At this stage, most automatic staging neural networks are designed by human experts, and this process is time-consuming and laborious. In this paper, we propose a novel neural architecture search (NAS) framework based on bilevel optimization approximation for EEG-based sleep stage classification. The proposed NAS architecture mainly performs the architectural search through a bilevel optimization approximation, and the model is optimized by search space approximation and search space regularization with parameters shared among cells. Finally, we evaluated the performance of the model searched by NAS on the Sleep-EDF-20, Sleep-EDF-78 and SHHS datasets with an average accuracy of 82.7%, 80.0% and 81.9%, respectively. The experimental results show that the proposed NAS algorithm provides some reference for the subsequent automatic design of networks for sleep classification.

摘要

随着生活质量的提高,人们越来越关注睡眠质量。基于脑电图(EEG)的睡眠阶段分类是评估睡眠质量和睡眠障碍的良好指标。现阶段,大多数自动分期神经网络是由人类专家设计的,这个过程既耗时又费力。在本文中,我们提出了一种基于双层优化近似的新型神经架构搜索(NAS)框架,用于基于EEG的睡眠阶段分类。所提出的NAS架构主要通过双层优化近似来执行架构搜索,并通过搜索空间近似和搜索空间正则化对模型进行优化,其中细胞间共享参数。最后,我们在Sleep-EDF-20、Sleep-EDF-78和SHHS数据集上评估了由NAS搜索的模型的性能,平均准确率分别为82.7%、80.0%和81.9%。实验结果表明,所提出的NAS算法为后续睡眠分类网络的自动设计提供了一些参考。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验