Suppr超能文献

使用多流融合网络实现可解释的睡眠阶段分类。

Towards interpretable sleep stage classification with a multi-stream fusion network.

作者信息

Chen Jingrui, Fan Xiaomao, Ge Ruiquan, Xiao Jing, Wang Ruxin, Ma Wenjun, Li Ye

机构信息

Department of Information Management, Guangdong Justice Police Vocational College, Guangzhou, Guangdong, 510520, China.

College of Big Data and Internet, Shenzhen Technology University, Shenzhen, Guangdong, 518055, China.

出版信息

BMC Med Inform Decis Mak. 2025 Apr 14;25(1):164. doi: 10.1186/s12911-025-02995-9.

Abstract

Sleep stage classification is a significant measure in assessing sleep quality and diagnosing sleep disorders. Many researchers have investigated automatic sleep stage classification methods and achieved promising results. However, these methods ignored the heterogeneous information fusion of the spatial-temporal and spectral-temporal features among multiple-channel sleep monitoring signals. In this study, we propose an interpretable multi-stream fusion network, named MSF-SleepNet, for sleep stage classification. Specifically, we employ Chebyshev graph convolution and temporal convolution to obtain the spatial-temporal features from body-topological information of sleep monitoring signals. Meanwhile, we utilize a short time Fourier transform and gated recurrent unit to learn the spectral-temporal features from sleep monitoring signals. After fusing the spatial-temporal and spectral-temporal features, we use a contrastive learning scheme to enhance the differences in feature patterns of sleep monitoring signals across various sleep stages. Finally, LIME is employed to improve the interpretability of MSF-SleepNet. Experimental results on ISRUC-S1 and ISRUC-S3 datasets show that MSF-SleepNet achieves competitive results and is superior to its state-of-the-art counterparts on most of performance metrics.

摘要

睡眠阶段分类是评估睡眠质量和诊断睡眠障碍的一项重要指标。许多研究人员对自动睡眠阶段分类方法进行了研究,并取得了可喜的成果。然而,这些方法忽略了多通道睡眠监测信号中时空特征和频谱-时间特征的异构信息融合。在本研究中,我们提出了一种用于睡眠阶段分类的可解释多流融合网络,名为MSF-SleepNet。具体来说,我们采用切比雪夫图卷积和时间卷积从睡眠监测信号的身体拓扑信息中获取时空特征。同时,我们利用短时傅里叶变换和门控循环单元从睡眠监测信号中学习频谱-时间特征。在融合时空特征和频谱-时间特征后,我们使用对比学习方案来增强不同睡眠阶段睡眠监测信号特征模式的差异。最后,采用LIME来提高MSF-SleepNet的可解释性。在ISRUC-S1和ISRUC-S3数据集上的实验结果表明,MSF-SleepNet取得了具有竞争力的结果,并且在大多数性能指标上优于其同类的最新方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验