Suppr超能文献

用于脑机接口的双阶段迁移学习

Double Stage Transfer Learning for Brain-Computer Interfaces.

作者信息

Gao Yunyuan, Li Mengting, Peng Yun, Fang Feng, Zhang Yingchun

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2023;31:1128-1136. doi: 10.1109/TNSRE.2023.3241301. Epub 2023 Feb 6.

Abstract

In the application of brain-computer interfaces (BCIs), electroencephalogram (EEG) signals are difficult to collect in large quantities due to the non-stationary nature and long calibration time required. Transfer learning (TL), which transfers knowledge learned from existing subjects to new subjects, can be applied to solve this problem. Some existing EEG-based TL algorithms cannot achieve good results because they only extract partial features. To achieve effective transfer, a double-stage transfer learning (DSTL) algorithm which applied transfer learning to both preprocessing stage and feature extraction stage of typical BCIs was proposed. First, Euclidean alignment (EA) was used to align EEG trials from different subjects. Second, aligned EEG trials in the source domain were reweighted by the distance between the covariance matrix of each trial in the source domain and the mean covariance matrix of the target domain. Lastly, after extracting spatial features with common spatial patterns (CSP), transfer component analysis (TCA) was adopted to reduce the differences between different domains further. Experiments on two public datasets in two transfer paradigms (multi-source to single-target (MTS) and single-source to single-target (STS)) verified the effectiveness of the proposed method. The proposed DSTL achieved better classification accuracy on two datasets: 84.64% and 77.16% in MTS, 73.38% and 68.58% in STS, which shows that DSTL performs better than other state-of-the-art methods. The proposed DSTL can reduce the difference between the source domain and the target domain, providing a new method for EEG data classification without training dataset.

摘要

在脑机接口(BCI)的应用中,由于脑电图(EEG)信号具有非平稳特性且需要较长的校准时间,因此难以大量采集。迁移学习(TL)可以将从现有受试者学到的知识迁移到新受试者上,从而应用于解决这一问题。一些现有的基于EEG的TL算法仅提取部分特征,无法取得良好效果。为实现有效迁移,提出了一种双阶段迁移学习(DSTL)算法,该算法将迁移学习应用于典型BCI的预处理阶段和特征提取阶段。首先,使用欧几里得对齐(EA)来对齐不同受试者的EEG试验。其次,通过源域中每个试验的协方差矩阵与目标域的平均协方差矩阵之间的距离对源域中对齐的EEG试验进行重新加权。最后,在用共同空间模式(CSP)提取空间特征后,采用迁移成分分析(TCA)进一步减小不同域之间的差异。在两种迁移范式(多源到单目标(MTS)和单源到单目标(STS))下对两个公共数据集进行的实验验证了该方法的有效性。所提出的DSTL在两个数据集上实现了更好的分类准确率:在MTS中分别为84.64%和77.16%,在STS中分别为73.38%和68.58%,这表明DSTL的性能优于其他现有最优方法。所提出的DSTL可以减小源域和目标域之间的差异,为无需训练数据集的EEG数据分类提供了一种新方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验