Suppr超能文献

一种基于无监督深度迁移学习的脑机接口运动想象脑电分类方案

An Unsupervised Deep-Transfer-Learning-Based Motor Imagery EEG Classification Scheme for Brain-Computer Interface.

作者信息

Wang Xuying, Yang Rui, Huang Mengjie

机构信息

School of Advanced Technology, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China.

School of Electrical Engineering, Electronics & Computer Science, University of Liverpool, Liverpool L69 3BX, UK.

出版信息

Sensors (Basel). 2022 Mar 14;22(6):2241. doi: 10.3390/s22062241.

Abstract

Brain-computer interface (BCI) research has attracted worldwide attention and has been rapidly developed. As one well-known non-invasive BCI technique, electroencephalography (EEG) records the brain's electrical signals from the scalp surface area. However, due to the non-stationary nature of the EEG signal, the distribution of the data collected at different times or from different subjects may be different. These problems affect the performance of the BCI system and limit the scope of its practical application. In this study, an unsupervised deep-transfer-learning-based method was proposed to deal with the current limitations of BCI systems by applying the idea of transfer learning to the classification of motor imagery EEG signals. The Euclidean space data alignment (EA) approach was adopted to align the covariance matrix of source and target domain EEG data in Euclidean space. Then, the common spatial pattern (CSP) was used to extract features from the aligned data matrix, and the deep convolutional neural network (CNN) was applied for EEG classification. The effectiveness of the proposed method has been verified through the experiment results based on public EEG datasets by comparing with the other four methods.

摘要

脑机接口(BCI)研究已引起全球关注并得到迅速发展。作为一种著名的非侵入式BCI技术,脑电图(EEG)从头皮表面区域记录大脑的电信号。然而,由于EEG信号的非平稳特性,在不同时间或从不同受试者收集的数据分布可能不同。这些问题影响了BCI系统的性能并限制了其实际应用范围。在本研究中,提出了一种基于无监督深度迁移学习的方法,通过将迁移学习的思想应用于运动想象EEG信号的分类来解决BCI系统当前的局限性。采用欧几里得空间数据对齐(EA)方法在欧几里得空间中对齐源域和目标域EEG数据的协方差矩阵。然后,使用共同空间模式(CSP)从对齐的数据矩阵中提取特征,并应用深度卷积神经网络(CNN)进行EEG分类。通过基于公开EEG数据集的实验结果与其他四种方法进行比较,验证了所提方法的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0fb/8950019/87b148cb80b2/sensors-22-02241-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验