Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou 215123, China.
ACS Nano. 2023 Apr 25;17(8):7750-7764. doi: 10.1021/acsnano.3c00470. Epub 2023 Apr 6.
Optogenetic therapy has emerged as a promising technique for the treatment of ocular diseases; however, most optogenetic tools rely on external blue light to activate the photoswitch, whose relatively strong phototoxicity may induce retinal damage. Herein, we present the demonstration of camouflage nanoparticle-based vectors for bioluminescence-driven optogenetic therapy of retinoblastoma. In biomimetic vectors, the photoreceptor CRY2 and its interacting partner CIB1 plasmid are camouflaged with folic acid ligands and luciferase NanoLuc-modified macrophage membranes. To conduct proof-of-concept research, this study employs a mouse model of retinoblastoma. In comparison to external blue light irradiation, the developed system enables an bioluminescence-activated apoptotic pathway to inhibit tumor growth with greater therapeutic efficacy, resulting in a significant reduction in ocular tumor size. Furthermore, unlike external blue light irradiation, which causes retinal damage and corneal neovascularization, the camouflage nanoparticle-based optogenetic system maintains retinal structural integrity while avoiding corneal neovascularization.
光遗传学疗法已成为治疗眼部疾病的一种有前途的技术;然而,大多数光遗传学工具依赖于外部蓝光来激活光开关,其相对较强的光毒性可能导致视网膜损伤。在此,我们展示了基于伪装纳米粒子的载体用于生物发光驱动的视网膜母细胞瘤光遗传学治疗的演示。在仿生载体中,光感受器 CRY2 及其相互作用伴侣 CIB1 质粒被叶酸配体和荧光素酶 NanoLuc 修饰的巨噬细胞膜伪装。为了进行概念验证研究,本研究采用了视网膜母细胞瘤的小鼠模型。与外部蓝光照射相比,所开发的系统能够通过生物发光激活的凋亡途径以更高的治疗效果抑制肿瘤生长,导致眼部肿瘤大小显著减小。此外,与外部蓝光照射引起的视网膜损伤和角膜新生血管形成不同,基于伪装纳米粒子的光遗传学系统在避免角膜新生血管形成的同时保持视网膜结构的完整性。