Suppr超能文献

NTBiRW:一种基于双层双向随机游走的新型邻居模型,用于预测潜在的疾病相关微生物。

NTBiRW: A Novel Neighbor Model Based on Two-Tier Bi-Random Walk for Predicting Potential Disease-Related Microbes.

作者信息

Yin Meng-Meng, Gao Ying-Lian, Zheng Chun-Hou, Liu Jin-Xing

出版信息

IEEE J Biomed Health Inform. 2023 Mar;27(3):1644-1653. doi: 10.1109/JBHI.2022.3229473. Epub 2023 Mar 7.

Abstract

Studies have revealed that microbes have an important effect on numerous physiological processes, and further research on the links between diseases and microbes is significant. Given that laboratory methods are expensive and not optimized, computational models are increasingly used for discovering disease-related microbes. Here, a new neighbor approach based on two-tier Bi-Random Walk is proposed for potential disease-related microbes, known as NTBiRW. In this method, the first step is to construct multiple microbe similarities and disease similarities. Then, three kinds of microbe/disease similarity are integrated through two-tier Bi-Random Walk to obtain the final integrated microbe/disease similarity network with different weights. Finally, Weighted K Nearest Known Neighbors (WKNKN) is used for prediction based on the final similarity network. In addition, leave-one-out cross-validation (LOOCV) and 5-fold cross-validation (5-fold CV) are applied for evaluating the performance of NTBiRW. Multiple evaluating indicators are taken to show the performance from multiple perspectives. And most of the evaluation index values of NTBiRW are better than those of the compared methods. Moreover, in case studies on atopic dermatitis and psoriasis, most of the first 10 candidates in the final result can be proven. This also demonstrates the capability of NTBiRW for discovering new associations. Therefore, this method can contribute to the discovery of disease-related microbes and thus offer new thoughts for further understanding the pathogenesis of diseases.

摘要

研究表明,微生物对众多生理过程具有重要影响,进一步研究疾病与微生物之间的联系具有重要意义。鉴于实验室方法成本高昂且未得到优化,计算模型越来越多地用于发现与疾病相关的微生物。在此,提出了一种基于双层双向随机游走的新邻居方法来寻找潜在的疾病相关微生物,即NTBiRW。在该方法中,第一步是构建多种微生物相似度和疾病相似度。然后,通过双层双向随机游走整合三种微生物/疾病相似度,以获得具有不同权重的最终整合微生物/疾病相似度网络。最后,基于最终的相似度网络使用加权K最近已知邻居(WKNKN)进行预测。此外,采用留一法交叉验证(LOOCV)和五折交叉验证(5折CV)来评估NTBiRW的性能。采用多个评估指标从多个角度展示性能。并且NTBiRW的大多数评估指标值优于比较方法。此外,在特应性皮炎和银屑病的案例研究中,最终结果中的前10个候选者大多可以得到证实。这也证明了NTBiRW发现新关联的能力。因此,该方法有助于发现与疾病相关的微生物,从而为进一步理解疾病的发病机制提供新思路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验