Suppr超能文献

RWHMDA:用于微生物-疾病关联预测的超图随机游走

RWHMDA: Random Walk on Hypergraph for Microbe-Disease Association Prediction.

作者信息

Niu Ya-Wei, Qu Cun-Quan, Wang Guang-Hui, Yan Gui-Ying

机构信息

School of Mathematics, Shandong University, Jinan, China.

Data Science Institute, Shandong University, Jinan, China.

出版信息

Front Microbiol. 2019 Jul 10;10:1578. doi: 10.3389/fmicb.2019.01578. eCollection 2019.

Abstract

Based on advancements in deep sequencing technology and microbiology, increasing evidence indicates that microbes inhabiting humans modulate various host physiological phenomena, thus participating in various disease pathogeneses. Owing to increasing availability of biological data, further studies on the establishment of efficient computational models for predicting potential associations are required. In particular, computational approaches can also reduce the discovery cycle of novel microbe-disease associations and further facilitate disease treatment, drug design, and other scientific activities. This study aimed to develop a model based on the random walk on hypergraph for microbe-disease association prediction (RWHMDA). As a class of higher-order data representation, hypergraph could effectively recover information loss occurring in the normal graph methodology, thus exclusively illustrating multiple pair-wise associations. Integrating known microbe-disease associations in the Human Microbe-Disease Association Database (HMDAD) and the Gaussian interaction profile kernel similarity for microbes, random walk was then implemented for the constructed hypergraph. Consequently, RWHMDA performed optimally in predicting the underlying disease-associated microbes. More specifically, our model displayed AUC values of 0.8898 and 0.8524 in global and local leave-one-out cross-validation (LOOCV), respectively. Furthermore, three human diseases (asthma, Crohn's disease, and type 2 diabetes) were studied to further illustrate prediction performance. Moreover, 8, 10, and 8 of the 10 highest ranked microbes were confirmed through recent experimental or clinical studies. In conclusion, RWHMDA is expected to display promising potential to predict disease-microbe associations for follow-up experimental studies and facilitate the prevention, diagnosis, treatment, and prognosis of complex human diseases.

摘要

基于深度测序技术和微生物学的进展,越来越多的证据表明,栖息在人体中的微生物会调节宿主的各种生理现象,从而参与各种疾病的发病过程。由于生物数据的可用性不断提高,需要进一步研究建立有效的计算模型来预测潜在的关联。特别是,计算方法还可以缩短新型微生物-疾病关联的发现周期,并进一步促进疾病治疗、药物设计和其他科学活动。本研究旨在开发一种基于超图随机游走的微生物-疾病关联预测模型(RWHMDA)。作为一类高阶数据表示形式,超图可以有效地弥补在常规图方法中出现的信息损失,从而专门说明多个成对关联。将人类微生物-疾病关联数据库(HMDAD)中已知的微生物-疾病关联与微生物的高斯相互作用谱核相似性相结合,然后对构建的超图实施随机游走。因此,RWHMDA在预测潜在的疾病相关微生物方面表现最佳。更具体地说,我们的模型在全局和局部留一法交叉验证(LOOCV)中的AUC值分别为0.8898和0.8524。此外,对三种人类疾病(哮喘、克罗恩病和2型糖尿病)进行了研究,以进一步说明预测性能。此外,排名最高的10种微生物中有8种、10种和8种已通过最近的实验或临床研究得到证实。总之,RWHMDA有望在预测疾病-微生物关联方面展现出有前景的潜力,以用于后续的实验研究,并促进复杂人类疾病的预防、诊断、治疗和预后。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bddf/6635699/776088a3a862/fmicb-10-01578-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验