Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with the Max Planck Society, 60528 Frankfurt, Germany.
Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with the Max Planck Society, 60528 Frankfurt, Germany; Donders Centre for Neuroscience, Department of Neuroinformatics, Radboud University, 6525 AJ Nijmegen, the Netherlands.
Neuron. 2021 Dec 1;109(23):3862-3878.e5. doi: 10.1016/j.neuron.2021.09.052. Epub 2021 Oct 20.
Cognitive functions are subserved by rhythmic neuronal synchronization across widely distributed brain areas. In 105 area pairs, we investigated functional connectivity (FC) through coherence, power correlation, and Granger causality (GC) in the theta, beta, high-beta, and gamma rhythms. Between rhythms, spatial FC patterns were largely independent. Thus, the rhythms defined distinct interaction networks. Importantly, networks of coherence and GC were not explained by the spatial distributions of the strengths of the rhythms. Those networks, particularly the GC networks, contained clear modules, with typically one dominant rhythm per module. To understand how this distinctiveness and modularity arises on a common anatomical backbone, we correlated, across 91 area pairs, the metrics of functional interaction with those of anatomical projection strength. Anatomy was primarily related to coherence and GC, with the largest effect sizes for GC. The correlation differed markedly between rhythms, being less pronounced for the beta and strongest for the gamma rhythm.
认知功能是由广泛分布的大脑区域的节律性神经元同步来实现的。在 105 个脑区对中,我们通过相干性、功率相关性和格兰杰因果关系(GC)研究了theta、beta、高 beta 和 gamma 节律下的功能连接(FC)。在不同的节律之间,空间 FC 模式在很大程度上是独立的。因此,这些节律定义了不同的相互作用网络。重要的是,相干性和 GC 网络不能用节律强度的空间分布来解释。这些网络,特别是 GC 网络,包含明显的模块,每个模块通常有一个主导的节律。为了理解这种独特性和模块性如何在共同的解剖学基础上产生,我们在 91 个脑区对之间,将功能相互作用的度量与解剖投影强度的度量进行了相关性分析。解剖结构主要与相干性和 GC 有关,GC 的影响最大。这种相关性在不同的节律之间差异显著,beta 节律的相关性较弱,而 gamma 节律的相关性最强。