Suppr超能文献

基于深度学习的图像分割模型,使用基于磁共振成像的卷积神经网络进行心脏生理评估。

Deep learning-based image segmentation model using an MRI-based convolutional neural network for physiological evaluation of the heart.

作者信息

Xu Wanni, Shi Jianshe, Lin Yunling, Liu Chao, Xie Weifang, Liu Huifang, Huang Siyu, Zhu Daxin, Su Lianta, Huang Yifeng, Ye Yuguang, Huang Jianlong

机构信息

Department of Mathematics and Computer Science, Quanzhou Normal University, Quanzhou, China.

Fujian Provincial Key Laboratory of Data Intensive Computing, Quanzhou, China.

出版信息

Front Physiol. 2023 Mar 21;14:1148717. doi: 10.3389/fphys.2023.1148717. eCollection 2023.

Abstract

Cardiovascular disease is a high-fatality health issue. Accurate measurement of cardiovascular function depends on precise segmentation of physiological structure and accurate evaluation of functional parameters. Structural segmentation of heart images and calculation of the volume of different ventricular activity cycles form the basis for quantitative analysis of physiological function and can provide the necessary support for clinical physiological diagnosis, as well as the analysis of various cardiac diseases. Therefore, it is important to develop an efficient heart segmentation algorithm. A total of 275 nuclear magnetic resonance imaging (MRI) heart scans were collected, analyzed, and preprocessed from Huaqiao University Affiliated Strait Hospital, and the data were used in our improved deep learning model, which was designed based on the U-net network. The training set included 80% of the images, and the remaining 20% was the test set. Based on five time phases from end-diastole (ED) to end-systole (ES), the segmentation findings showed that it is possible to achieve improved segmentation accuracy and computational complexity by segmenting the left ventricle (LV), right ventricle (RV), and myocardium (myo). We improved the Dice index of the LV to 0.965 and 0.921, and the Hausdorff index decreased to 5.4 and 6.9 in the ED and ES phases, respectively; RV Dice increased to 0.938 and 0.860, and the Hausdorff index decreased to 11.7 and 12.6 in the ED and ES, respectively; myo Dice increased to 0.889 and 0.901, and the Hausdorff index decreased to 8.3 and 9.2 in the ED and ES, respectively. The model obtained in the final experiment provided more accurate segmentation of the left and right ventricles, as well as the myocardium, from cardiac MRI. The data from this model facilitate the prediction of cardiovascular disease in real-time, thereby providing potential clinical utility.

摘要

心血管疾病是一个高致死率的健康问题。心血管功能的准确测量依赖于生理结构的精确分割和功能参数的准确评估。心脏图像的结构分割以及不同心室活动周期体积的计算构成了生理功能定量分析的基础,能够为临床生理诊断以及各种心脏疾病的分析提供必要支持。因此,开发一种高效的心脏分割算法很重要。我们从华侨大学附属海峡医院收集、分析并预处理了总共275份核磁共振成像(MRI)心脏扫描数据,并将这些数据用于基于U-net网络设计的改进深度学习模型中。训练集包含80%的图像,其余20%为测试集。基于从舒张末期(ED)到收缩末期(ES)的五个时间阶段,分割结果表明,通过分割左心室(LV)、右心室(RV)和心肌(myo),可以提高分割精度并降低计算复杂度。我们将LV在ED和ES阶段的Dice指数分别提高到0.965和0.921,Hausdorff指数分别降至5.4和6.9;RV的Dice指数在ED和ES阶段分别提高到0.938和0.860,Hausdorff指数分别降至11.7和12.6;myo的Dice指数在ED和ES阶段分别提高到0.889和0.901,Hausdorff指数分别降至8.3和9.2。最终实验中获得的模型能够更准确地分割心脏MRI中的左、右心室以及心肌。该模型的数据有助于实时预测心血管疾病,从而提供潜在的临床应用价值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验