Suppr超能文献

CCF-GNN:用于病理图像分类的融合外观、微环境和拓扑结构的统一模型。

CCF-GNN: A Unified Model Aggregating Appearance, Microenvironment, and Topology for Pathology Image Classification.

出版信息

IEEE Trans Med Imaging. 2023 Nov;42(11):3179-3193. doi: 10.1109/TMI.2023.3249343. Epub 2023 Oct 27.

Abstract

Pathology images contain rich information of cell appearance, microenvironment, and topology features for cancer analysis and diagnosis. Among such features, topology becomes increasingly important in analysis for cancer immunotherapy. By analyzing geometric and hierarchically structured cell distribution topology, oncologists can identify densely-packed and cancer-relevant cell communities (CCs) for making decisions. Compared to commonly-used pixel-level Convolution Neural Network (CNN) features and cell-instance-level Graph Neural Network (GNN) features, CC topology features are at a higher level of granularity and geometry. However, topological features have not been well exploited by recent deep learning (DL) methods for pathology image classification due to lack of effective topological descriptors for cell distribution and gathering patterns. In this paper, inspired by clinical practice, we analyze and classify pathology images by comprehensively learning cell appearance, microenvironment, and topology in a fine-to-coarse manner. To describe and exploit topology, we design Cell Community Forest (CCF), a novel graph that represents the hierarchical formulation process of big-sparse CCs from small-dense CCs. Using CCF as a new geometric topological descriptor of tumor cells in pathology images, we propose CCF-GNN, a GNN model that successively aggregates heterogeneous features (e.g., appearance, microenvironment) from cell-instance-level, cell-community-level, into image-level for pathology image classification. Extensive cross-validation experiments show that our method significantly outperforms alternative methods on H&E-stained and immunofluorescence images for disease grading tasks with multiple cancer types. Our proposed CCF-GNN establishes a new topological data analysis (TDA) based method, which facilitates integrating multi-level heterogeneous features of point clouds (e.g., for cells) into a unified DL framework.

摘要

病理学图像包含丰富的细胞外观、微环境和拓扑特征信息,可用于癌症分析和诊断。在这些特征中,拓扑结构在癌症免疫治疗分析中变得越来越重要。通过分析几何形状和分层结构的细胞分布拓扑结构,肿瘤学家可以识别出密集的、与癌症相关的细胞群落 (CC),以便做出决策。与常用的像素级卷积神经网络 (CNN) 特征和细胞实例级图神经网络 (GNN) 特征相比,CC 拓扑特征的粒度和几何形状更高。然而,由于缺乏用于细胞分布和聚集模式的有效拓扑描述符,最近的深度学习 (DL) 方法并未充分利用拓扑特征进行病理学图像分类。在本文中,受临床实践的启发,我们通过全面学习细胞外观、微环境和拓扑结构,以细粒度到粗粒度的方式对病理学图像进行分析和分类。为了描述和利用拓扑结构,我们设计了细胞群落森林 (CCF),这是一种新的图,它表示从小密集的 CC 到大稀疏的 CC 的层次公式化过程。我们将 CCF 用作病理学图像中肿瘤细胞的新几何拓扑描述符,提出了 CCF-GNN,这是一种 GNN 模型,它从细胞实例级、细胞群落级,依次聚合异构特征(例如,外观、微环境),用于病理学图像分类。广泛的交叉验证实验表明,与替代方法相比,我们的方法在 H&E 染色和免疫荧光图像上针对具有多种癌症类型的疾病分级任务具有显著的性能提升。我们提出的 CCF-GNN 建立了一种新的拓扑数据分析 (TDA) 方法,该方法便于将点云(例如,细胞)的多层次异构特征集成到统一的 DL 框架中。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验