Lin Yanna, Li Haotian, Wu Aoyu, Wang Yong, Qu Huamin
IEEE Trans Vis Comput Graph. 2024 Jul;30(7):4108-4121. doi: 10.1109/TVCG.2023.3251344. Epub 2024 Jun 27.
Dashboards, which comprise multiple views on a single display, help analyze and communicate multiple perspectives of data simultaneously. However, creating effective and elegant dashboards is challenging since it requires careful and logical arrangement and coordination of multiple visualizations. To solve the problem, we propose a data-driven approach for mining design rules from dashboards and automating dashboard organization. Specifically, we focus on two prominent aspects of the organization: arrangement, which describes the position, size, and layout of each view in the display space; and coordination, which indicates the interaction between pairwise views. We build a new dataset containing 854 dashboards crawled online, and develop feature engineering methods for describing the single views and view-wise relationships in terms of data, encoding, layout, and interactions. Further, we identify design rules among those features and develop a recommender for dashboard design. We demonstrate the usefulness of DMiner through an expert study and a user study. The expert study shows that our extracted design rules are reasonable and conform to the design practice of experts. Moreover, a comparative user study shows that our recommender could help automate dashboard organization and reach human-level performance. In summary, our work offers a promising starting point for design mining visualizations to build recommenders.
仪表板在单个显示屏上包含多个视图,有助于同时分析和传达数据的多个视角。然而,创建有效且美观的仪表板具有挑战性,因为这需要对多个可视化进行仔细且合乎逻辑的安排与协调。为解决该问题,我们提出一种数据驱动的方法,用于从仪表板中挖掘设计规则并实现仪表板组织的自动化。具体而言,我们关注组织的两个突出方面:布局,它描述了每个视图在显示空间中的位置、大小和布局;以及协调,它表示成对视图之间的交互。我们构建了一个新的数据集,其中包含854个在线爬取的仪表板,并开发了特征工程方法,用于从数据、编码、布局和交互方面描述单个视图以及视图间的关系。此外,我们在这些特征中识别设计规则,并开发了一个用于仪表板设计的推荐器。我们通过专家研究和用户研究证明了DMiner的实用性。专家研究表明,我们提取的设计规则是合理的,并且符合专家的设计实践。此外,一项对比用户研究表明,我们的推荐器可以帮助实现仪表板组织的自动化,并达到人类水平的性能。总之,我们的工作为设计挖掘可视化以构建推荐器提供了一个有前景的起点。