Suppr超能文献

基于自监督学习的高效生物医学图像标注分割。

Self-Supervised Learning for Annotation Efficient Biomedical Image Segmentation.

出版信息

IEEE Trans Biomed Eng. 2023 Sep;70(9):2519-2528. doi: 10.1109/TBME.2023.3252889. Epub 2023 Aug 30.

Abstract

OBJECTIVE

The scarcity of high-quality annotated data is omnipresent in machine learning. Especially in biomedical segmentation applications, experts need to spend a lot of their time into annotating due to the complexity. Hence, methods to reduce such efforts are desired.

METHODS

Self-Supervised Learning (SSL) is an emerging field that increases performance when unannotated data is present. However, profound studies regarding segmentation tasks and small datasets are still absent. A comprehensive qualitative and quantitative evaluation is conducted, examining SSL's applicability with a focus on biomedical imaging. We consider various metrics and introduce multiple novel application-specific measures. All metrics and state-of-the-art methods are provided in a directly applicable software package (https://osf.io/gu2t8/).

RESULTS

We show that SSL can lead to performance improvements of up to 10%, which is especially notable for methods designed for segmentation tasks.

CONCLUSION

SSL is a sensible approach to data-efficient learning, especially for biomedical applications, where generating annotations requires much effort. Additionally, our extensive evaluation pipeline is vital since there are significant differences between the various approaches.

SIGNIFICANCE

We provide biomedical practitioners with an overview of innovative data-efficient solutions and a novel toolbox for their own application of new approaches. Our pipeline for analyzing SSL methods is provided as a ready-to-use software package.

摘要

目的

机器学习中普遍存在高质量标注数据稀缺的问题。特别是在生物医学分割应用中,由于其复杂性,专家需要花费大量时间进行标注。因此,需要减少这些工作的方法。

方法

自监督学习(SSL)是一个新兴领域,在存在未标注数据时可以提高性能。然而,关于分割任务和小数据集的深入研究仍然缺乏。我们进行了全面的定性和定量评估,重点关注生物医学成像,考察了 SSL 的适用性。我们考虑了各种指标,并引入了多个新的特定于应用的指标。所有的指标和最新方法都在一个可直接应用的软件包中提供(https://osf.io/gu2t8/)。

结果

我们表明,SSL 可以将性能提高多达 10%,这对于专门设计用于分割任务的方法来说尤为显著。

结论

SSL 是一种数据高效学习的合理方法,特别是对于生物医学应用,因为生成注释需要大量的工作。此外,我们广泛的评估管道是至关重要的,因为各种方法之间存在显著差异。

意义

我们为生物医学从业者提供了创新的数据高效解决方案概述,并提供了一个新的工具包,用于他们自己应用新方法。我们用于分析 SSL 方法的管道作为一个即用型软件包提供。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验