Suppr超能文献

DensePPI:一种基于图像的新型深度学习方法,用于预测蛋白质-蛋白质相互作用。

DensePPI: A Novel Image-Based Deep Learning Method for Prediction of Protein-Protein Interactions.

出版信息

IEEE Trans Nanobioscience. 2023 Oct;22(4):904-911. doi: 10.1109/TNB.2023.3251192. Epub 2023 Oct 3.

Abstract

Protein-protein interactions (PPI) are crucial for understanding the behaviour of living organisms and identifying disease associations. This paper proposes DensePPI, a novel deep convolution strategy applied to the 2D image map generated from the interacting protein pairs for PPI prediction. A colour encoding scheme has been introduced to embed the bigram interaction possibilities of Amino Acids into RGB colour space to enhance the learning and prediction task. The DensePPI model is trained on 5.5 million sub-images of size 128×128 generated from nearly 36,000 interacting and 36,000 non-interacting benchmark protein pairs. The performance is evaluated on independent datasets from five different organisms; Caenorhabditis elegans, Escherichia coli, Helicobacter Pylori, Homo sapiens and Mus Musculus. The proposed model achieves an average prediction accuracy score of 99.95% on these datasets, considering inter-species and intra-species interactions. The performance of DensePPI is compared with the state-of-the-art methods and outperforms those approaches in different evaluation metrics. Improved performance of DensePPI indicates the efficiency of the image-based encoding strategy of sequence information with the deep learning architecture in PPI prediction. The enhanced performance on diverse test sets shows that the DensePPI is significant for intra-species interaction prediction and cross-species interactions. The dataset, supplementary file, and the developed models are available at https://github.com/Aanzil/DensePPI for academic use only.

摘要

蛋白质-蛋白质相互作用(PPI)对于理解生物的行为和识别疾病关联至关重要。本文提出了 DensePPI,这是一种应用于互作蛋白对生成的 2D 图像映射的新的深度卷积策略,用于 PPI 预测。本文引入了一种颜色编码方案,将氨基酸的双元相互作用可能性嵌入到 RGB 颜色空间中,以增强学习和预测任务。DensePPI 模型在近 36000 个互作和 36000 个非互作基准蛋白对生成的 550 万个大小为 128×128 的子图像上进行训练。该模型在来自五个不同生物的独立数据集上进行评估;秀丽隐杆线虫、大肠杆菌、幽门螺杆菌、智人和小鼠。该模型在考虑种间和种内相互作用的情况下,在这些数据集上的平均预测准确率为 99.95%。将 DensePPI 的性能与最先进的方法进行比较,在不同的评估指标上均优于这些方法。DensePPI 的性能提升表明了基于序列信息的图像编码策略与深度学习架构在 PPI 预测中的效率。在不同的测试集上的性能提升表明,DensePPI 对种内相互作用预测和种间相互作用都具有重要意义。该数据集、补充文件和开发的模型可在 https://github.com/Aanzil/DensePPI 上获取,仅供学术使用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验